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I.     ABBREVIATIONS 
 

APK: APS kinase 
APR: APS reductase 
$36��DGHQRVLQH��¶-phosphosulfate 
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ATAC-seq: Assay for Transposase-Accessible Chromatin sequencing 
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EIL3: Ethylene-Insensitive 3-Like 
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GCN: Gene Coexpression Network 
GENIE3: GEne Network Inference with Ensemble of Trees 
GO: Gene Ontology 
GRN: Gene Regulatory Network 
GSEA: Gene Set Enrichment Analysis 
IVI: Integrated Value of Influence 
LSU: Response to Low Sulfur  
OCS: Open Chromatin Sites 
OX: Overexpression  
3$36���¶-SKRVSKRDGHQRVLQH��¶-phosphosulfate 
PP2C: Protein phosphatase 2C  
PWMs: position weight matrices. 
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SAM: S-adenosyl-methionine 
SDI: Sulfur Deficiency Induced  
Sl: Solanum lycopersicum 
SLIM1: Sulfur Limitation 1  
TARGET: Transient Assay Reporting Genome-wide Effects of Transcription factors. 
TF: Transcription Factor 
WT: Wild Type 
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II.    RESUMEN 
 

     El sulfato (forma más disponible del azufre) es un macronutriente esencial requerido para el 

crecimiento, desarrollo y productividad de las plantas. La deficiencia de sulfato causa 

reducciones significativas en la biomasa vegetal, afectando la fotosíntesis lo que conlleva a 

perdidas en el rendimiento agrícola. Mientras que la mayoría de los estudios del transcriptoma 

enfocados en la deficiencia de sulfato se han centrado en Arabidopsis thaliana, el conocimiento 

es limitado en especies usadas como cultivos.  El tomate (Solanum lycopersicum), es un cultivo 

con importancia global y un organismo modelo para el estudio del desarrollo de frutos y las 

respuestas de las plantas al estrés biótico y abiótico. El tomate es afectado severamente por la 

deficiencia de sulfato, demostrando reducción en su crecimiento, mientras que el transcriptoma 

de tomate demuestra que la deficiencia de azufre afecta la regulación génica en hojas y raíces de 

tomate, sin embargo, aún no se conocen los principales TFs que controlan estos cambios 

regulatorios y su efecto en el fenotipo observado durante este estrés. 

     Utilizando datos públicos disponibles de transcriptómica en tomate (~10,000 bibliotecas de 

RNA-seq), aplicamos el algoritmo GENIE3 para predecir relaciones regulatorias entre los TFs 

y sus genes blanco. Estas redes se refinaron integrando redes de co-expresión, predicciones de 

sitios de unión de TFs y datos de accesibilidad de la cromatina obtenidos de conjuntos de datos 

reanalizados de ATAC-seq y DNAse-seq. Un análisis de enriquecimiento con datos de ChIP-seq 

de tomate mostró que las GRNs pueden capturar vías regulatorias relevantes biológicamente. 

Nuestros hallazgos muestran que, aunque los genes expresados son en su mayoría ubicuos entre 

órganos, las interacciones regulatorias son altamente específicas en cada órgano. Nuestra GRN 

de frutos detecto exitosamente los blancos de los TFs TOMATO AGAMOUS-LIKE 1 (TAGL1) 
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y RIPENING INHIBITOR (RIN) cuyo efecto en la maduración frutal esta verificado. Además, 

analizando la GRN de hojas, se validó las funciones de dos TFs ABA response element binding 

factor (ABF), el SlABF3 y SlABF5 en la regulación de genes de respuesta a ABA y su 

correlación con la sequía. Usando las GRNs se logró encontrar dos posibles reguladores a través 

del análisis de redes, el Solyc03g118290 y Solyc06g063070 sugeridos como posibles 

reguladores centrales de la maduración frutal, y un TF de la familia bZIP Solyc01g095460, 

homologo a AtGBF3 como un nuevo regulador de las respuestas al ABA.  

     Utilizamos las GRNs órgano específicas para analizar las respuestas a la deficiencia de sulfato 

en raíces y hojas de tomate, filtrando las redes para mantener sólo los genes expresados 

diferencialmente (DEG) identificados previamente. Este enfoque permitió la creación de GRNs 

contexto-específicas, revelando que las respuestas a la deficiencia de sulfato demuestran 

mecanismos regulatorios órgano-específicos. Se logró detectar TFs clave asociados a la 

regulación de la deficiencia de sulfato, incluyendo Solyc05g009720 (HHO) y Solyc08g078340 

(KUA1) en raíces, Solyc05g054650 (ZAT11) y Solyc02g071130 (WRKY71) en hojas, y 

reguladores compartidos como Solyc01g006650 (EIL3), Solyc04g072460 (TGA7) y 

Solyc10g086530 (SCL14). El SlEIL3 surgió como el candidato más prometedor debido a su 

papel regulando genes de respuesta a deficiencia de sulfato en las GRNs y su homología con 

SLIM1, el cual es clave en la deficiencia de sulfato en Arabidopsis. Realizamos un análisis de 

perturbación denominado TARGET, que identificó los blancos de regulación directa de EIL3 en 

protoplastos de tomate y reveló una superposición significativa con los DEG en deficiencia de 

azufre y los blancos predichos de las GRNs. Más del 60% de los genes relacionados a genes de 

sulfato fueron validados con TARGET, demostrando a SlEIL3 como regulador clave y dando 

soporte a su elección para experimentos de validación funcional. 
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Para validar la función del SlEIL3, generamos plantas de Arabidopsis thaliana que 

sobreexpresan este TF (OX-SlEIL3) y las estudiamos bajo tratamientos control (medio MS con 

todas sus sales) y de deficiencia de sulfato (-S). Las plantas OX-SlEIL3 mostraron un mayor 

crecimiento, con raíces primarias más largas, áreas foliares más amplias y mayor contenido total 

de azufre, en ambos tratamientos. El análisis transcriptómico de las plantas OX-SlEIL3 demostró 

una respuesta genotípica muy similar a tratamientos de deficiencia de sulfato en plantas WT y a 

plantas sobreexpresoras de SLIM1, también se encontró que SlEIL3, regula genes importantes 

de respuesta a deficiencia de sulfato, compartidos con SLIM1 como 4 genes Response to Low 

Sulfur (LSU), un Sulfur Deficiency Induced (SDI), tres genes de metabolización de azufre 

(APRS2, ATPS1, and APSk3), y cinco genes transportadores SULTRs. Validando nuestra 

hipótesis debido a que el SlEIL3 se identificó como un regulador clave del metabolismo del 

sulfato, sentando las bases para desarrollar estrategias que mejoren la eficiencia nutricional y la 

resiliencia al estrés en tomate.  

     Nuestros hallazgos sugieren que SlEIL3 desempeña un papel fundamental en la regulación 

de los cambios en la expresión génica provocados por la deficiencia de sulfato en tomate, 

impulsando el desarrollo de respuestas fenotípicas como represión de crecimiento, la activación 

de vías de asimilación, metabolización de sulfato y catabolismo de biomoléculas. Los resultados 

de esta investigación proporcionan una base para estrategias de mejoramiento de cultivos y 

problemas de estrés en la agricultura. Adicionalmente, demostramos el potencial de las GRNs 

para identificar nuevos reguladores para dilucidar cascadas regulatorias en respuesta a múltiples 

condiciones, estadios de desarrollo y tratamientos experimentales en tomate y en otras especies 

de interés. Las redes regulatorias producidas en este estudio están disponibles como recurso 

online accesible para la comunidad científica en la plataforma TomatoViz. 
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III.   ABSTRACT 
 

 

Sulfate (the most available form of sulfur) is an essential macronutrient required for plant 

growth, development, and productivity. Sulfate deficiency causes significant reductions in plant 

biomass, affects important physiological processes such as photosynthesis, and decreases 

agricultural yields.  While most transcriptome research on sulfate deficiency has focused on 

Arabidopsis thaliana, the knowledge is more limited in crop species. Tomato (Solanum 

lycopersicum), a globally important crop and model organism for studying fruit development 

and plant responses to biotic and abiotic stress, is severely impacted by sulfate deficiency. 

However, the regulatory mechanisms that regulate its transcriptional responses, particularly the 

roles of transcription factors (TFs) in controlling gene expression, are still understudied. To 

address this knowledge gap, we used a systems biology approach to generate tissue-specific gene 

regulatory networks (GRNs) for tomato roots, leaves, flowers, fruits, and seeds. 

 Using publicly accessible transcriptome data (~10,000 RNA-seq libraries), we used the 

GENIE3 algorithm to predict regulatory relationships between TFs and target genes. These 

networks were further refined and validated through the integration of co-expression data, TF 

binding site predictions, and chromatin accessibility data from reanalyzed ATAC-seq and 

DNAse-seq datasets. Enrichment analysis with tomato ChIP-seq data showed that the GRNs can 

capture biologically relevant regulatory pathways. 

      Our findings show that, while genes expressed are mostly ubiquitous across organs, the 

regulatory interactions are highly organ-specific. Our fruit GRN successfully recapitulated 

experimentally verified ripening regulator targets from TOMATO AGAMOUS-LIKE 1 
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(TAGL1) and RIPENING INHIBITOR (RIN) TFs. In addition, analysis of the leaf GRN 

validated the functions of two ABA response element binding factor (ABF) TFs, SlABF3 and 

SlABF5 in regulating ABA-responsive genes and their correlation to drought. Using these two 

context-specific GRNs, we were able to suggest new regulators through network analysis. We 

identified new potential key TFs, including ERF and ARF as potential central regulators of 

ripening and SlGBF3 as a potential new regulator of ABA responses. 

We used the organ-specific GRNs to analyze the sulfate deficiency responses in tomato 

roots and leaves, filtering the networks to keep only differentially expressed genes (DEGs) 

identified in prior studies on the tomato's sulfate deficiency transcriptome. This approach allows 

the creation of context-specific GRNs, revealing that sulfate deficiency responses are controlled 

by organ-specific regulatory mechanisms. Notably, we discovered significant TFs linked with 

sulfate deficiency, including Solyc05g009720 (HHO) and Solyc08g078340 (KUA1) in roots, 

Solyc05g054650 (ZAT11) and Solyc02g071130 (WRKY71) in leaves, and shared regulators 

such as Solyc01g006650 (EIL3), Solyc04g072460 (TGA7), and Solyc10g086530 (SCL14). The 

SlEIL3 emerged as the most promising candidate due to its predicted key role in regulating 

sulfate-responsive genes and its homology with SLIM1, a key regulator of the sulfate cascade in 

Arabidopsis. We performed a perturbation analysis called TARGET and identified the EIL3 

direct regulatory targets in tomato protoplasts, revealing significant overlap with the DEG under 

sulfate deficiency and its GRN-predicted genes. Over 60% of sulfur-related targets were 

validated with TARGET, highlighting the SlEIL3 as a key regulator and supporting its selection 

for functional validation experiments. 

To validate the SlEIL3 function, we generated Arabidopsis thaliana plants that 

overexpress this TF (OX-SlEIL3). The OX plants showed enhanced growth, with longer primary 
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roots, broader foliar areas, and higher total sulfur content compared to wild-type (WT) plants, 

both under control conditions and sulfate deficiency treatments. Transcriptomic analysis of OX-

SlEIL3 plants revealed a genotypic response that resembles the transcriptomes of WT plants 

under sulfate deficiency and the transcriptome of SLIM1-overexpressing plants.  Furthermore, 

SlEIL3 was found to regulate key sulfate deficiency response genes, including shared targets 

with SLIM1, involved in sulfur metabolism and transport. These targets included four Response 

to Low Sulfur (LSU) genes, one Sulfur Deficiency Induced (SDI) gene, three sulfur metabolism 

cascade genes (APRS2, ATPS1, and APSk3), and five sulfate transporter genes (SULTRs). 

Additionally, analysis of SlEIL3 targets indicated a broader regulatory role beyond sulfur 

metabolism, influencing stress response pathways, growth processes, and immune responses. In 

line with our hypothesis, SlEIL3 was identified as a key regulator of sulfur metabolism and stress 

response pathways in tomato, including oxidative stress responses, immune activation against 

pathogens, and the modulation of molecule transport. These findings provide the foundation for 

developing strategies looking forward to enhancing plant nutrient efficiency metabolism and 

stress resilience in tomato plants. Our findings suggest that SlEIL3 plays a pivotal role in 

regulating the gene expression changes caused by sulfate deficiency treatments in tomato, 

driving phenotypic responses such as growth repression and promoting processes like sulfate 

assimilation, sulfur compound metabolism, and biomolecule catabolism. These results provide 

a foundation for crop improvement strategies and to stress-related challenges in agriculture. 

Additionally, we proved the potential of GRNs to identify novel regulators in crops contributing 

to reveal regulatory cascades in response to diverse conditions, developmental stages, and 

experimental treatments in tomato and to other species. The networks developed in this study 

are available as an online resource for the scientific community on the TomatoViz platform. 
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IV.   INTRODUCTION 
 

Sulfur is a key macronutrient for plant growth. 
 

Agricultural yields, crop quality, and whole plant survival depend strongly on 

environmental cues that extend to more than just water and sunlight availability; it is also 

necessary that plants grow in adequate levels of mineral nutrients (Taiz and Zeiger, 2010). Sulfur 

is one of these crucial mineral nutrients that is required for all living organisms' survival. Sulfur 

is considered a macronutrient for plants because it accounts for 0,1-�����RI�D�SODQW¶V�GU\�ZHLJKW��

thus crop productivity is strongly affected by sulfur availability since it directly limits plant 

growth (Hawkesford, 2000; Maruyama-Nakashita, 2017, Preprint; Nakai and Maruyama-

Nakashita, 2020, Preprint). 

The ability of plants to take up inorganic sulfur in the form of sulfate is one of their 

essential roles in the ecosystem dynamics since through this process plants can provide sulfur to 

herbivorous animals and later on to other living organisms (Takahashi et al., 2011). Sulfate is 

necessary for plants because it is required for the synthesis of multiple essential compounds such 

as the amino acids cysteine and methionine. In addition, the thiol group formed during sulfur 

metabolization makes cysteine a crucial amino acid for protein structure, since it allows for the 

formation of disulfide bridges. Plants can transform sulfate into adenosine 5'-phosphosulfate 

(APS) using ATP, which is followed by reduction to sulfite and then to sulfide; these molecules 

serve as donors for other important biomolecules such as glutathione, S-adenosylmethionine 

(SAM), vitamins, cofactors and coenzymes (such as thiamine, biotin, and coenzyme-A), and 

multiple secondary metabolites (Figure 1) (Maruyama-Nakashita and Ohkama-Ohtsu, 2017; 

Kopriva et al., 2019). These biomolecules make sulfate indispensable to sustain biological 
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processes related to plant growth, development, stress responses, and chemical defense 

metabolism (Maruyama-Nakashita, 2017, Preprint; Maruyama-Nakashita and Ohkama-Ohtsu, 

2017; Henríquez-Valencia et al., 2018; Nakai and Maruyama-Nakashita, 2020, Preprint).  

 

The agronomic impacts of sulfate deficiency are well documented. Plants experiencing 

sulfate deficiency exhibit growth retardation, reduced photosynthetic efficiency, and decreased 

chlorophyll and amino acid levels, leading to an overall  reduction on its development and 

environmental adaptability (Hawkesford, 2000; McNeill et al., 2005; Zuchi et al., 2009; 

Hubberten et al., 2012, Preprint; Maruyama-Nakashita, 2017, Preprint; Zhang et al., 2020a; 

/\þND� et al., 2023) In aerial organs, sulfate deficiency primarily affects leaf development, 

leading to premature yellowing or chlorosis, particularly in young leaves, as sulfate is an 

immobile nutrient (Figure 2) (Hasan et al.��������/\þND�et al., 2023). At a physiological level, 

sulfur deficiency in Arabidopsis thaliana is related to S-storage compounds catabolism, 

downregulation of amino acid biosynthesis routes and an increased expression of high-affinity 

sulfate transporters (SULTR1;1 and SULTR1;2), which increase sulfate uptake and cell 

transportation (Jones-Rhoades and Bartel, 2004; Maruyama-Nakashita, 2004, 2017, Preprint; 

Maruyama-Nakashita et al., 2004; Forieri et al., 2017; Siddiqui et al., 2020) In crops plants, the 

effects of sulfur deficiency translates into stunted groeth and reduced photosynthetic rates which 

adds up in poor quality fruits or seeds and overall reduced yields (Narayan et al., 2022; 

Fernández et al., 2024) . 
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FIGURE N°1. Overview of plants sulfate assimilation and metabolization pathway. 
Enzymes are highlighted in yellow. Legend: sulfate transporter (SULTR), ATP sulfurylase 
�$736��� DGHQRVLQH� �ƍ-phosphosulfate reductase (APR), sulfite reductase (SIR), serine 
acetyltransferase (SAT), O-acetyl-thiol-lyase (OAS-TL), cysteine desulfhydrase (LCD, DES), 
APS kinase (APK), and sulfotransferase (SOT). The metabolites in the scheme are as follows: 
�ƍ-SKRVSKRVXOIDWH� �$36��� �ƍ-phosphoadenylylsulfate (PAPS), O-acetylserine (OAS), cysteine 
(CYS), glutathione (GSH), and glucosinolates (GSLs). Image from (Wawrzynska & Sirko, 
2024). 
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FIGURE N°2. Comparative phenotypic effects of sulfate deficiency in Arabidopsis thaliana, 
Nicotiana tabacum, and Solanum lycopersicum. Representative images illustrate the 
morphological differences between sulfate-sufficient (Control S+) and sulfate-deficient 
(Treatment 6í��FRQGLWLRQV�IRU�HDFK�VSHFLHV��A. thaliana shows a reduction in rosette size and 
FKORURVLV� XQGHU�6í� FRQGLWLRQV��N. tabacum exhibits stunted growth and yellowing of leaves, 
while S. lycopersicum demonstrates impaired leaf development and chlorosis. Images adapted 
from (Hasan et al.��������/\þND�et al., 2023). 
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Transcriptional regulation triggered by sulfate deficiency. 

 

From past decades, numerous studies have explored the transcriptomic effects of sulfate 

deficiency, particularly in the model plant Arabidopsis thaliana. These analyses have identified 

a wide array of genes whose expression depends on sulfate availability (Aarabi et al., 2016; 

Bielecka et al., 2015; Dietzen et al., 2020; Forieri et al., 2017; Henríquez-Valencia et al., 2018; 

Iyer-Pascuzzi et al., 2011; Maruyama-Nakashita et al., 2004, 2006; Ristova & Kopriva, 2022; 

Zhang et al., 2020; Zuchi et al., 2009). Henríquez-Valencia et al. (2018) identified 27 sulfate-

responsive genes, including those critical for sulfate acquisition, remobilization, and 

assimilation, such as the sulfate transporters SULTR1;1, SULTR2;1, and SULTR4;2, APS 

reductase 3 (APS3), and genes involved in glucosinolate metabolism, such as BCAT4 and 

CYP79B3. Additionally, genes related to glutathione metabolism, such as GSTU20, and 

established sulfate deficiency markers, including Sulfur deficiency induced genes (SDIs) and 

response to low sulfur genes (LSUs), were consistently affected (Bonnot et al., 2020; 

:DZU]\ĔVND�DQG�6LUNR�������. Sulfate deficiency in crops commonly leads to growth retardation 

and reduced productivity, often linked to the downregulation of amino acid biosynthesis 

pathways and the depletion of sulfur-containing metabolites, such as glucosinolates, glutathione, 

S-adenosylmethionine and O-acetylserine (Courbet et al., 2019; Watanabe and Hoefgen, 2019, 

Preprint). 

We performed a review of the transcriptomic studies in crop plants under sulfate 

deficiency and found a significant gap in available datasets addressing gene expression changes 

under this stress (Fernández et al., 2024). In wheat (Triticum aestivum), sulfate starvation 

induces the expression of genes involved in sulfur and nitrogen transport, carbon metabolism, 
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and sulfur-containing metabolites, including glutathione and glucosinolates, along with 

canonical markers like SDI1, SDI2, and LSU orthologs (Bonnot et al., 2020). Comparable 

transcriptomic responses have been observed in Brassica spp., Pisum sativum, Medicago 

truncatula, Solanum lycopersicum, and Oryza sativa, characterized by the upregulation of 

SULTRs, ATP-sulfurylases, glycosyl-transferases, and APS reductases (Canales et al., 2020; 

Courbet et al., 2021; Fernández et al., 2024). This limited data availability underscores the need 

for further research in this area to better understand the molecular responses to sulfate limitation. 

  

Transcription factors controlling gene expression responses to sulfate availability. 
 

Most of our understanding of TFs involved in the sulfate deficiency response comes from studies 

on Arabidopsis thaliana. Among these, SLIM1/EIL3, a member of the plant-specific EIL TF 

family, has emerged as a key regulator (Maruyama-Nakashita et al.��������:DZU]\ĔVND�DQG�

Sirko, 2014). While other EIL family members, such as EIN3, EIL1, and EIL2, are associated 

with ethylene signaling, the roles of EIL4 and EIL5 remain poorly defined (Dolgikh et al., 2019). 

In contrast, the SLIM1 TF does not respond to ethylene but instead binds directly to sulfur 

response elements in the promoters of sulfur deficiency-responsive genes, including SULTR 

genes. It also plays a critical role in reprogramming secondary sulfur compound biosynthesis 

pathways during sulfate deficiency (Maruyama-Nakashita et al., 2004, 2006; Kawashima et al., 

2011; Maruyama-Nakashita, 2017, Preprint).  

     Interestingly, SLIM1's transcript levels and subcellular localization are unaffected by sulfate 

availability, suggesting a post-transcriptional regulation mechanism (Maruyama-Nakashita et 

al., 2006). Phylogenetic analysis performed in our recent review article(Fernández et al., 2024), 
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places Arabidopsis SLIM1/EIL3 in a specific clade with 286 other taxa, including rice homologs 

OsEIL3;1 (Os08g0508700) and OsEIL3;2 (Os09g0490200) reported to be involved in  SULTR 

genes regulation, and the tomato homolog SLIM1/EIL3 (Solyc01g006650) which has been 

identified as a potential key regulator of sulfur transport and metabolism in tomato leaves and 

roots (Canales et al., 2020). Beyond SLIM1, other TFs have been implicated in the regulation of 

the sulfate deficiency response, since over 50% of the responsive genes found in Arabidopsis 

shoots can't be explained by the effect of SLIM1 (Dietzen et al., 2020). EIL1 has been shown to 

act as a supportive regulator in the control of sulfate deficiency responses, complementing 

SLIM1/EIL3 (Kawashima et al., 2011; Dietzen et al., 2020). Multiple TFs from the MYB family, 

including MYB28 and MYB29, have been found to positively regulate sulfur-containing 

secondary metabolites (glucosinolates) biosynthesis (Hirai et al., 2007; Frerigmann, 2016; 

Mitreiter and Gigolashvili, 2021). Integrated meta-analyses of transcriptome data in Arabidopsis 

suggest that other TFs, such as the bZIP1, RVE2, and NF-YA2, may play a role in regulating 

sulfate deficiency response (Henríquez-Valencia et al., 2018; Watanabe and Hoefgen, 2019, 

Preprint). A recent review conducted by our laboratory identified over 25 TFs primarily from 

the EIN/EIL, MYB, bZIP and GBF TF families with a potential role as regulators of the sulfate 

deficiency response (Fernández et al., 2024). Most of them were identified through TF binding 

site prediction, yeast one-hybrid (Y1H), ChIP-seq, and electrophoretic mobility shift assays 

(Fernández et al., 2024). However, the direct role of these TFs in the regulation of sulfate 

deficiency response has not been experimentally validated yet in Arabidopsis nor any other 

species.  
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Gene regulatory networks inference methods  

 

In systems biology, researchers look forward to accurately reconstructing a panoramic 

view of the regulatory cascades occurring inside the cell, particularly to find the effect of TFs on 

their target genes. A strategy to represent these regulatory pathways is through the generation of 

genome-wide Gene Regulatory Networks (GRNs). These networks show TFs and targets as 

nodes connected by edges pinpointing a regulatory directed interaction, therefore GRNs can be 

interpreted as blueprints to detect the hierarchical relations of gene regulation (Chai et al., 2014; 

Swift and Coruzzi, 2017). GRN models have allowed for the identification of important TFs as 

key hubs controlling regulatory cascades in multiple organisms (Alvarez et al., 2014; Doidy et 

al., 2016; Swift et al., 2020; Vidal et al., 2020).  

      Various approaches exist to help in the identification of TF-target interactions and generate 

gene networks. TF binding sites can be predicted by the analysis of DNA-binding motifs and 

identifying the matching binding sites within gene promoters (Mercatelli et al., 2020). If it 

includes open chromatin sites (OCS) sequences, obtained using methods such as DNase-seq 

(Zhang et al., 2012) or ATAC-seq (Li et al., 2007), it allows accurate predictions of TF binding 

on a genome-wide scale under cellular context.  Alternatively, Chromatin immunoprecipitation 

followed by sequencing (ChIP-seq) and DNA affinity purification sequencing (DAP-seq) can 

directly assess events of TF binding in genomic regions; however, these methods are technically 

challenging, particularly in non-model organisms (P. J. Park, 2009).  
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      An alternative method to ChIP-Seq that integrates information about direct regulation and 

changes in gene expression has arisen in the last years, Transient Assay Reporting Genome-wide 

Effects of Transcription factors (TARGET), is a cell-based TF perturbation assay (Bargmann et 

al., 2013, Preprint). This method allows for rapid identification of genome-wide targets of a TF 

on cells. The TARGET assay in plants uses protoplasts that are transformed with a vector that 

expresses a TF fused to a glucocorticoid receptor sequence.  The chimeric GR-TF protein can be 

induced to relocate to the nucleus by the addition of the glucocorticoid±ligand dexamethasone 

(DEX), where it can bind to its target genes and activate gene expression. Cells can also be 

treated with the translation inhibitor cycloheximide (CHX), which blocks the synthesis of 

secondary TFs allowing the distinction of direct target genes regulated by the TF under study 

(Bargmann et al., 2013, Preprint). TARGET has been successfully used to study the effect of 

different TFs in gene expression control and epigenetic regulation in A. thaliana and few other 

plants (Doidy et al., 2016; Brooks et al., 2019; Alvarez et al., 2020; Li et al., 2020; Swift et al., 

2020; Shanks et al., 2022), moreover TARGET has been used to obtain the direct target genes 

involved in nutrient deficiency regulatory cascades and, more importantly, interactions identified 

by this assay have also been shown to have in planta relevance for TFs  involved in nitrate 

regulation (TGA1, NAP, bZIP3, RAV1, etc) (Brooks et al., 2019; Alvarez et al., 2020; Li et al., 

2020; Safi et al., 2021; Shanks et al., 2022). 

GRNs models can be obtained by using machine learning algorithms that take advantage 

of omic information and infer regulatory relationships, a standout method is GENIE3 (GEne 

Network Inference with Ensemble of Trees), which uses high-throughput gene expression data 

with iterative random forests to infer TF-target regulatory pairs (Huynh-Thu et al., 2010; Huynh-

Thu and Geurts, 2019). GENIE3 has demonstrated superior performance in the DREAM4 
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Multifactorial Network challenge and the DREAM5 Network Inference challenge(Huynh-Thu 

et al., 2010; Huynh-Thu and Geurts, 2019); additionally, GENIE3 has demonstrated its accuracy 

on predicting accurate in vivo regulation through GRNs on multiple plant species (Huang et al., 

2018; Harrington et al., 2020; Tu et al., 2020; De Clercq et al., 2021; Shanks et al., 2022; Chen 

et al., 2023; Ranjan et al., 2024). Furthermore, the integration of high throughput omic 

information, like gene expression data with TF binding predictions, might improve GRN 

accuracy and reduce the existence of false positives (Haque et al., 2019). Thus, integrative 

strategies that combine computational predictions of TF binding sites in various genomic 

regions, predicted GRNs, and validations with experimental data are powerful approaches that 

have been successfully applied in model organisms such as Arabidopsis and wheat, resulting in 

comprehensive and reliable GRNs (Chen et al., 2023; De Clercq et al., 2021). Such approaches 

provide useful insights into TF regulatory potential and provide a solid foundation for future 

research in other organisms.  

      In a recent review article, our research team used GRN modeling to address the knowledge 

gap regarding potential regulatory TFs involved in the sulfate deficiency response. We integrated 

available GRNs from Arabidopsis thaliana and predictive information from two relevant crops, 

tomato and rice, to generate predictive GRNs in an effort to elucidate the molecular mechanisms 

driving phenotypic changes and regulatory cascades associated with sulfate deficiency 

(Fernández et al., 2024). However, we faced significant limitations because crop plants often 

lack comprehensive GRN data, and in many cases, sufficient data on TF-target interactions are 

unavailable, particularly for stress responses like sulfate deficiency. 
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Tomato lacks networks models that explain direct regulation between TFs and target 

genes. 

Tomato (Solanum lycopersicum L.) is a plant of the Solanaceae family and one of the 

most widely consumed crops globally, according to the FAOstat website 

(http://www.fao.org/faostat). The tomato plant grows as a medium-sized herb and produces a 

fleshy fruit enriched with nutrients considered essential for the human diet (Shi and Le Maguer, 

2000; Canene-Adams et al., 2005). Tomato is considered a model organism (Kimura and Sinha, 

2008; The Tomato Genome Consortium, 2012), primarily for the study of fleshy fruit 

development and ripening, plant responses to pathogens(Kimura and Sinha, 2008; Gascuel et al., 

2017, Preprint). In molecular biology, multiple resources for genomic analysis in tomato have 

been produced (The Tomato Genome Consortium, 2012); nevertheless, despite its importance, 

tomato regulatory cascades in response to external or internal cues are poorly understood. 

 In tomato, the discovery of in vivo interactions between TFs and target genes is an area 

still in development. In Solanum lycopersicum, only a limited number of TFs have been studied 

using ChIP-seq (Fujisawa et al., 2011; Ricardi et al., 2014; Du et al., 2017; Lü et al., 2018; Gao 

et al., 2019; Lira et al., 2020; Liu et al., 2020; Ding et al., 2022; Tu et al., 2022; Yang et al., 

2022; Jiang et al., 2023).  Similarly, few TFs have been studied using DAPseq (López-Vidriero 

et al., 2021; Chong et al., 2022; Huang et al., 2023; Zhu et al., 2023). While these approaches 

have identified TF binding sites and regulatory targets of TFs, they are typically limited to 

individual TFs. Alternatively, a limited number of studies have addressed accessible chromatin 

sites in S. lycopersicum particularly to analyze responses to abiotic stress mostly in fruits using 

ATAC-seq (Maher et al., 2018; Reynoso et al., 2019; Hendelman et al., 2021; Kajala et al., 

2021) and DNAase-seq(Qiu et al., 2016; Lü et al., 2018).  
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     Biological network models for tomato are limited, with most studies focused on protein-

protein interactions or GCNs derived from single experiments or small datasets integrating fewer 

than 10 studies (Arhondakis et al., 2016; Bizouerne et al., 2021; Ichihashi et al., 2014; Pirona et 

al., 2023; Wang et al., 2023; Yue et al., 2016). Comprehensive GCNs that integrate data from 

multiple experiments are scarce; for example, (Fukushima et al., 2012; Kim et al., 2017) 

combined transcriptomic data from microarrays and a limited number of RNA-seq experiments, 

whereas (Zouine et al., 2017)  integrated data from 29 RNA-seq studies to generate a global 

GCN. However, these networks are organ-independent or exclusively focused on fruits and were 

generated using limited gene lists based on outdated tomato annotations (ITAG2.3 or ITAG3.0) 

(Fukushima et al., 2012; Kim et al., 2017; Zouine et al., 2017). In this context, developing GRN 

models that include a more complete set of annotated genes based on newer reference genome 

assemblies, from wider universe of high-throughput omics data and that can represent organ-

specific regulation is imperative to uncover regulatory mechanisms in tomato.  

������6XOIDWH�GHILFLHQF\�DIIHFWV�WRPDWR�SODQW�JURZWK��UHVXOWLQJ�LQ�UHGXFHG�SODQW�VL]H�DFFRPSDQLHG�

ZLWK� UHGXFHG� VKRRW� DQG� URRW� IUHVK� ZHLJKW�� FKORURVLV� LQ� \RXQJHU� OHDYHV� �GXH� WR� GHFUHDVHG�

FKORURSK\OO�FRQWHQW���LPSDLUHG�&2ၷ�DVVLPLODWLRQ�DQG�SKRWRV\QWKHVLV��ORZHU�SURWHLQ�OHYHOV��DQG�

GHFUHDVHG�\LHOG��ZHLJKW�DQG�QXPEHU�RI�IUXLWV���,W�DOVR�DOWHUV�RWKHU�QXWULHQWV�KRPHRVWDVLV��DIIHFWLQJ�

QLWUDWH�� SKRVSKDWH�� FDOFLXP�� PDJQHVLXP�� PRO\EGHQXP�� SRWDVVLXP�� DQG� LURQ� OHYHOV�� 6XOIDWH�

GHILFLHQF\�DIIHFWV� WKH� OHYHOV�RI�PHWDEROLWHV� OLNH� VXOILGHV��F\VWHLQH�� Ȗ�JOXWDP\O�F\VWHLQH��*6+��

DQG�6$0�EXW�LQFUHDVHV�VHULQH�DQG�2$6�OHYHOV�LQ�VKRRWV�DQG�URRWV�(Lopez et al., 1996; Alhendawi 

et al., 2005; Zuchi et al., 2009; Zhao et al., 2014; Hasan et al., 2018; Canales et al., 2020; 

Siddiqui et al., 2020; Cao et al., 2023; Coppa et al., 2023) 
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To characterize the molecular response of tomato plants to sulfate deficiency, Canales et 

al. (Canales et al., 2020) conducted a detailed transcriptomic analysis with temporal and organ-

specific resolution. Their findings showed a significant effect of growth reduction in roots and 

aerial organs, as shown by decreased total dry weight (Figure 3). Significant transcriptome 

changes were found in both leaves and roots after three weeks of sulfate deficiency, with the 

majority of DEGs responding to organ-specific conditions. Only 10% of the upregulated and 

20% of the downregulated DEGs were shared between the two organs, with downregulated genes 

prevailing in abundance overall (Figure 3b). 

Upregulated root genes were enriched for plant defense and phosphate metabolism, while 

those in leaves were associated with hormone signaling (e.g., salicylic acid and abscisic acid 

pathways) and senescence. Shared upregulated processes included cellular responses to sulfur 

starvation and cell transport. In contrast, downregulated root genes were enriched for metal ion 

responses and oxidative stress, whereas downregulated leaf genes were linked to photosynthesis 

and light responses. Both organs showed decreased expression of cytokinin and auxin signaling 

pathways, as well as cell wall regulation. This study also identified potential TFs involved in 

sulfate transport, assimilation, and metabolism routes using co-expression networks and TF-

target interaction data from PlantRegMap (Tian et al., 2020). However, TF selection relied on 

outdated S. lycopersicum annotations (ITAG 2.4) and a limited TF set, and their regulatory roles 

in sulfate deficiency responses remain to be experimentally validated. 
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FIGURE N°3. Sulfate deficiency effect in Solanum lycopersicum plants. a. Images of tomato 

plants grown under full nutrient or S-limiting conditions for 2,3 and 4 weeks after sowing. b. 

Transcriptome effect of sulfate deficiency on tomato roots and leaves 3-4 weeks after sowing. 

Images from Canales, et al. (2020). 
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     In this study, we integrated a large-scale of tomato genomic datasets to generate, validate, 

and refine organ-specific Gene Regulatory Networks (GRNs) in Solanum lycopersicum. We then 

applied these networks to investigate the roots and leaves responses to sulfate deficiency, 

identifying key regulatory genes through their influentiality within the networks. Among these, 

we identified SlEIL3 as a promising candidate and performed a perturbation analysis followed 

by functional validation through the generation of overexpressing plants. Our results 

demonstrate that SlEIL3 acts as a central regulator of sulfate deficiency-responsive genes, 

controlling multiple biological processes contributing to the observed phenotypic growth 

changes in tomato plants under stress. The organ-specific GRNs produced in this work provide 

a valuable foundation for exploring a range of experimental conditions, from developmental 

processes to stress responses, offering a robust framework to address open questions in tomato 

biology. The organ-level GRNs are available at (https://plantaeviz.tomsbiolab.com/tomviz). 
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Hypothesis 

The growth limitation of S. lycopersicum exposed to sulfate deficiency is caused by a 

reprogramming of the roots and leaves transcriptome evoked by one or more central TFs 

commanding sulfate-responsive genes. 

 

General Goal 

To identify central Transcription factors (TFs) controlling global gene expression 

reprogramming in Solanum lycopersicum during sulfate deficiency. 

 

 Specific goals 

 

Aim 1. To generate organ-specific reference Gene Regulatory Network models for Solanum 

lycopersicum. 

Aim 2. To identify candidate TFs that are central regulators of the sulfate deficiency response in 

S. lycopersicum.  

Aim 3. To experimentally validate the function of a central TF candidate in the regulation of 

plant growth under sulfate deficiency. 
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V.    MATERIALS AND METHODS  

Aim 1 

Tomato gene annotation update. 

To track the gene models added in ITAG 4.1 and those removed compared to ITAG 4.0, a new 

version, ITAG 4.1c, was generated through a conditional merge. Gene models from ITAG 4.1 

were integrated into the 4.0 annotation file (.gff3) when their genome coordinates did not overlap 

with existing entries, resulting in the final ITAG4.1c annotation file.  To expand the functional 

annotations for tomato, ITAG 4.1c protein sequences were analyzed using eggNOG-mapper to 

predict Gene Ontology (GO) terms, functional categories, and orthology relationships based on 

evolutionary genealogy (Cantalapiedra et al., 2021). Additionally, functional annotations for all 

genes in ITAG 4.1c were generated using InterProScan v5.57-90 (Jones et al., 2014) under 

default parameters. The resulting GO annotations for molecular functions and biological 

processes were consolidated, and the unique annotations for each gene were used to create an 

updated GO set. 

To update the list of TFs in ITAG 4.1c, we integrated evidence from multiple sources. The 

selection criteria included annotated TFs from ITAG 4.0 and ITAG 4.1 (Fernandez-Pozo et al., 

2015), the TF catalogs from PlantTFDB (Jin et al., 2017) and ITAK (Zheng et al., 2016). In 

addition, a keyword search within ITAG 4.1c GO annotations, an ortholog analysis using default 

parameters in Orthofinder v.3.0 (Emms & Kelly, 2019) with the Arabidopsis TF list from TAIR 

(Rhee et al., 2003), and results from the InterProScan proteome analysis (Jones et al., 2014), was 

carried out. Genes supported by at least three independent sources of evidence were classified 

as TFs. We generated an updated set of tomato Position Weight Matrices (PWMs) of DNA-

binding motifs by combining previously identified PWMs from CisBP (Weirauch et al., 2014) 
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with in silico predictions for the final TF list. The PWMs were inferred using the JASPAR 

³LQIHUBSURILOH�S\´� VFULSW� (Castro-Mondragon et al., 2022). This tool uses sequence similarity 

search algorithms to link a TF proteome to reference PWMs from Arabidopsis and Maize, thus 

providing a new set of DNA-binding motifs for tomato TFs based on the best sequence-similarity 

hits (associated to p-values). 

Input mRNA-seq analysis 

      To obtain tomato RNA-seq datasets, we queried the NCBI SRA database using ("Solanum 

lycopersicum´>2UJDQLVP@� $1'� ,//80,1$>3ODWIRUP@�� 127� �5,3-Seq[Strategy] OR 

OTHER[Strategy] OR ChIP-Seq[Source] OR METATRANSCRIPTOMIC[Source] OR 

Bisulfite-Seq[Strategy] OR GENOMIC[Source] OR METAGENOMIC[Source] OR DNase-

Hypersensitivity[Strategy] OR WGS[Strategy] OR ncRNA-Seq[Strategy] OR WCS[Strategy] 

OR degradome OR miRNA-Seq[Strategy] OR small RNA[Title] OR sRNA[Title]) (Leinonen et 

al., 2011). The metadata was classified by organ of origin following Santiago et al. (2024) 

protocol. The libraries were downloaded using SRAtools (Kans, 2010). Adapters were trimmed, 

and low-quality reads (reads with average quality inferior to q<30 and shorter than 20 bases) 

were filtered out using fastp v.0.20.0 (Chen et al., 2018). Reads were aligned to the SL4.0 S. 

lycopersicum genome assembly (Hosmani et al., 2019) using STAR v.2.7.3 (Dobin et al., 2013). 

After mapping, a total of 10,618 mRNA-seq libraries were retained. Gene counts were obtained 

with FeatureCounts v.2.0.0 (Liao et al., 2014) using the ITAG4.1c annotation. Total counts were 

normalized to transcripts per million (TPM); Finally, the genes ZLWK����730�LQ�DW�OHDVW�����RI�

the total libraries for each organ were classified as specifically expressed, following Huang et 

al., (2018) protocol. 
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Input ChIP-seq analysis 

     The following query (("Solanum lycopersicum´>2UJDQLVP@� $1'� ,//80,1$>3ODWIRUP@��

AND ChIP-Seq[Source]) was used to obtain tomato TF-binding  (ChiP-seq) datasets from the 

NCBI SRA website (Leinonen et al., 2011). ChIP-seq libraries were processed using the methods 

available on ENCODE pipelines (Hitz et al., 2023). Briefly, the libraries were downloaded from 

the NCBI SRA using SRAtools (Kans, 2010). Adapters were trimmed, and low-quality reads 

(reads with average quality inferior to q<30 and shorter than 20 bases) were dismissed using 

Cutadapt v.4.9 (Martin, 2011). Each file was mapped with Bowtie2 v.2.54 (Langmead and 

Salzberg, 2012) to the SL4.0 assembly (Hosmani et al., 2019). Alignment files were sorted and 

filtered with Samtools v.1.21(Li et al., 2009) and peaks were identified with MACS2 v.2.2.9.1 

(Zhang et al., 2008). 2QO\�OLEUDULHV�ZLWK������PDSSLQJ�HIILFLHQF\�DQG�RYHU�������SHDNV�DVVLJQHG�

to annotated genes were retained as high-quality datasets for downstream analysis. 

Input ATAC-seq and DNAse-seq analysis 

The following query (("Solanum lycopersicum´>2UJDQLVP@�$1'�,//80,1$>3ODWIRUP@��$1'�

ATAC-Seq[Source] AND DNAse-Seq[Source]) was used to obtain tomato open chromatin sites 

(OCS) approximations  datasets from the NCBI SRA website (Leinonen et al., 2011) A total of 

183 open chromatin experiments (DNase-seq, ATAC-seq libraries) were downloaded using 

SRAtools (Kans, 2010). Reads were trimmed for adapters, and low-quality reads (reads with 

average quality inferior to q<30 and shorter than 20 bases) were dismissed using Cutadapt v.4.9 

(Martin, 2011). The ATAC-seq libraries were processed following Reynoso et al., (2019) 

pipeline, while the DNase-seq libraries were processed following Moyano et al., (2021) protocol. 

Briefly, both groups of reads were mapped to the SL4.0 genome assembly (Hosmani et al., 2019) 

using Bowtie2 v.2.54 (Langmead and Salzberg, 2012). The ATAC-seq alignments were sorted 
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and filtered with Samtools v.1.21 (Li et al., 2009) and peaks were identified with HOMER v.4.11 

(Heinz et al., 2010). The DNase-seq regions were mapped into DNase hypersensitive sites using 

HOTSPOT (Meuleman et al., 2020). OCS peak files were then merged by experiment and 

converted into FASTA sequences with BedTools v.2.31.1 (Quinlan and Hall, 2010).  

Determination of TF binding sites using FIMO 

Two TF-binding networks were generated by mapping all tomato TF DNA binding motifs, 

represented as Position Weight Matrices (PWMs) to genomic regions of the Solanum 

lycopersicum Sl4.0 genome assembly using the Find Individual Motif Occurrences (FIMO) 

search tool (Grant et al., 2011). FIMO calculates the probability of a motif binding to a specific 

DNA sequence. The DNA fasta sequences used as queries differed between the networks: one 

network included all promoter sequences collected from two kilobases upstream of each gene's 

transcription start site (TSS), whereas the second network used the organ-specific OCS 

sequences. The results were assigned to genes using BedTools v.2.31.1 ClosestGene (Quinlan 

and Hall, 2010). 

GENIE3 inference of regulatory interactions 

The processed transcriptomes represented as count tables for each organ, were given as input to 

the GENIE3 algorithm, as well as the updated list of ITAG4.1C annotated TFs. The GENIE3 

tool was run in an R environment with standard parameters, using 2,000 decision trees and a 

seed of 122 for reproducibility. The output scores were used to create subnetworks based on the 

top 1%, 2%, 5%, 8%, and 10% scores of TF-target pairings. These thresholds were used in 

previously published GENIE3 networks (Huang et al., 2018; Cuesta-Astroz et al., 2021; 

Olivares-Yañez et al., 2021).  
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Co-expression network generation 

To generate co-expression networks for tomato organs, we used the pipeline described in 

Orduña, et al. (Orduña et al., 2023). Briefly, the gene counts tables from the transcriptome of 

each organ were used to calculate the Pearson correlation indices for each gene. The results were 

ordered by gene rank in descending order and computed in a highest reciprocal ranking (HRR) 

matrix per organ following the formula: HRR (A,B) = max (rank (A,B), rank (B,A)). Finally, to 

avoid noise and low confidence pairings, the top 1% (3500 genes) of the highest frequency HRR 

per gene were chosen to make the tomato organ-specific GCNs.  

Enrichment analysis 

In order to evaluate the significance of the intersection between gene lists, we used the R package 

GeneSectR (https://github.com/NateyJay/genesectR). The GeneSectR utilizes the Fisher exact 

test to evaluate whether the observed overlap between gene sets is greater than what would be 

expected by chance, calculating a p-value that indicates the likelihood of the overlap occurring 

randomly.  

Gene Set Enrichment Analysis (GSEA) 

Gene Set Enrichment Analysis (GSEA) was conducted to identify overrepresented biological 

process GO terms using a hypergeometric test with Benjamini and Hochberg false discovery rate 

(FDR) correction (threshold p-value < 0.05). The analysis was performed using the BinGO 

v.3.0.5 tool (Maere et al., 2005) within Cytoscape, with input from the updated tomato 4.1c GO 

terms catalog. The REVIGO v. 1.8.1 (Supek et al., 2011) web application was used to improve 

and narrow down the grouping of GO terms, and a focus on GO terms within levels 5±7 was to 

focus on more specific biological processes.  
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Network performance evaluation. 

To evaluate the accuracy of the predicted GRNs in capturing true regulatory interactions, we 

employed the Contreras-López et al., (2022) pipeline to compute the area under the receiver 

operating characteristic (AUROC) and precision-recall (AUPR) curves. Briefly, these analyses 

were performed using organ-level GRNs and tested against validated regulatory interactions 

derived from reanalyzed tomato ChIP-seq datasets. True and false positive rates were calculated 

using the precrec v.0.14.4 package in R (Saito and Rehmsmeier, 2017). Gene interactions were 

filtered to retain only regulatory genes present in both the GENIE3-inferred and ChIP-seq 

networks, with edges assigned as binary labels indicating the validation status. To assess 

statistical significance, the AUROC and AUPR values were compared against 1,000 randomized 

networks generated by shuffling edge weights. Percentile-based confidence intervals (2.5±

�������ZHUH� XVHG� WR� EHQFKPDUN� WKH�*(1,(�� QHWZRUN¶V� SHUIRUPDQFH�� DQG� VLJQLILFDQFH�ZDV�

determined via a permutation test. 

GRNs visualization and networks analysis  

Network visualizations were generated using Cytoscape v.3.10.1(Shannon et al., 2003) and 

network topology analyses were conducted using the Cytoscape NetworkAnalyzer tool. The R 

package Influential v.2.2.9 (Salavaty et al., 2020) was used to identify the TF hubs with the 

highest connectivity and integrated centrality (IVI) of network nodes. IVI is a comprehensive 

measure of node influence that integrates topological features to identify hub nodes within gene 

networks (Salavaty et al., 2020).  
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TF-Target pairings analysis  

The outdegree of each transcription factor (TF) was used to estimate node connectivity within 

the GRNs. The frequency of TF-target pairs across all network interactions was quantified and 

categorized based on the degree of overlap among different TFs. The percentage of conserved 

targets for each TF was calculated by dividing the number of shared pairs by the total number of 

target genes associated with that TF. This percentage of conserved targets, combined with TF 

connectivity metrics, was used to visualize the distribution of TF connectivity within all 

networks. 

Functional validation of the GRNs. 

To functionally validate the organ specific GRNs, multiple transcriptomic datasets were 

reanalyzed. RNA sequencing libraries from the NCBI SRA repository were downloaded and 

processed, with adapters trimmed and quality filtered (q>30) Cutadapt v.49 (Martin, 2011). The 

reads from each library were pseudo-aligned to tomato transcript annotations (ITAG4.1c) using 

kallisto v0.44, and the resulting counts were normalized to Transcripts Per Million (TPM). 

Differentially expressed genes (DEGs) between different genotypes (knockouts/RNAi) or 

treatments compared to control conditions were identified using the DESeq2 package (Love et 

al., 2014), with an adjusted p-value threshold of <0.05 (Benjamini-Hochberg correction). DEGs 

and binding targets from ChIP-seq experiments were analyzed to assess their overlap with 

predicted TF-target interactions in the GRNs. 
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Aim 2 

Cloning vector generation 

The TF SlEIL3 coding sequence was initially cloned into the pENTR vector (Invitrogen) and 

transferred into the pBOB11_GFP vector (TARGET protocol) and into the pEarleyGate101 

YHFWRU��WUDQVJHQLF�SODQWV�JHQHUDWLRQ��IROORZLQJ�WKH�PDQXIDFWXUHU¶V�SURWRFRO�RI�/5�UHFRPELQDWLRQ�

(Gateway cloning system) (Earley et al., 2006). The final vectors, from different colonies, were 

sequenced.  

Protoplast extraction  

Seeds of S. lycopersicum cv. Moneymaker were grown for four weeks in sterile culture vessels 

containing, consisting of half-strength Murashige & Skoog medium (MS) (Murashige & Skoog, 

1962). Leaf protoplasts were isolated following an optimized version of the (Yoo et al., (2007) 

protocol. Briefly, leaf explants were cut into small pieces and incubated in the dark in an enzyme 

solution containing cellulase (Ozonuka R-10, Duchefa) and macerozyme (R-10, Duchefa) at a 

ratio of 1:0.27% for four hours, the cell suspension was filtered sequentially through 70 µm and 

40 µm cell strainers (BD Falcon), pelleted and washed with W5 buffer (154 mM NaCl, 125 mM 

&D&Oၷ����P0�.&O����P0�0(6����P0�JOXFRVH��S+�������&HOOV�ZHUH�VWRUHG�LQ�00J�VROXWLRQ������

P0�PDQQLWRO�� ���P0�0J&Oၷ�� ��P0�0(6�� S+� ������ 3rotoplast integrity and viability were 

assessed using a hemocytometer after staining with 1 mM Evans blue (Sigma-Aldrich). 

TARGET protocol 

TARGET protocol was performed following Brooks et al., (2019) protocol. Briefly, 100 µL of 

protoplast suspension (~1 million protoplasts/µL), 20 µg of plasmid DNA (pBOB11-GFP 

containing the SlEIL3 or empty vectors), and 100 µL of PEG solution (40% polyethylene glycol 
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����������P0�PDQQLWRO������P0�&D&Oၷ� were mixed up gently in falcon 15ml tubes, cells were 

washed three times with W5 buffer and incubated overnight. The following day, the cell solution 

was aliquoted into 3 replicates in different wells of a 24-well plate and washed with W5 buffer, 

each well was treated with 35 µM cycloheximide solution for 20 minutes, and then with 10 µM 

dexamethasone. Transfected cells were quantified using a cytometer (e.g., Accuri�) and sorted 

by fluorescence-assisted cell sorting (FACS) to isolate GFP-expressing cells. The total mRNA 

was obtained using the PureLink RNA kit (Thermofisher) and following manufacturer 

instructions. 

Genomic DNA contamination was eliminated by on-column DNase I treatment following the 

TURBO DNase (Invitrogen) protocol. RNA integrity and concentration were assessed using a 

NanoDrop spectrophotometer (Thermo Fisher), and RNA quality was further verified by agarose 

gel electrophoresis. One microgram of DNase I-treated RNA was used to generate poly-A-

enriched sequencing libraries using the Tru-Seq Stranded mRNA Library Prep kit (Illumina). 

Libraries were sequenced as 150 paired end reads on a NextSeq500 system (Illumina). 

TARGET RNA-Seq data analysis 

Raw reads for each library were preprocessed, adapters sequences were trimmed, and low-

quality reads (reads with average quality inferior to q<30 and shorter than 20 bases) were 

dismissed using Cutadapt v.4.9 (Martin, 2011). Each library was pseudo-aligned to Solanum 

lycopersicum annotations (ITAG4.1c) using kallisto v0.44 (Bray et al., 2016), and the resulting 

counts were normalized to Transcripts Per Million (TPM). The DEGs between different empty 

vector and transfected cells (EIL3) were identified using the DESeq2 package (Love et al., 2014), 

with an adjusted p-value threshold of p<0.05.  
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Aim 3 

 

Transgenic plants generation  

A laboratory strain of A. tumefaciens was transformed following Wise et al.(Wise et al., 2006) 

protocol. Briefly, A. tumefaciens strain GV3101 competent cells were inoculated with 0.5-1 µg 

of plasmid DNA (pEarleyGate101-SlEIL3), and incubated for 5 minutes on ice, 5 minutes in 

liquid nitrogen and 10 minutes at room temperature, cells were transferred into a growth medium 

(LB + 0.2 g/l ܵ݃ܯ ସܱ) and incubated at 28°C at 200 rpm. Following the incubation the cells were 

plated on LB with ampicillin and stored as liquid cell suspensions.  

Seeds of A. thaliana ecotype Col-0 (Wild type or WT) were grown in soil for 6 weeks. Plant 

transformation was performed using A. tumefaciens±mediated floral dip protocol modified from 

Clough & Bent (Clough and Bent, 1998). Briefly, A. tumefaciens recombinant cell suspension 

(with the destination OX vector) pre-culture was prepared in 250 ml LB liquid medium at 30 °C 

at 225 rpm for 24 hours. The culture was pelleted and resuspended in 100 ml of infiltration media 

(5% sucrose, 0.5% of Silwet L-77). A. thaliana inflorescences were submerged into the 

infiltration media to incorporate the expression vector, transformed plants were grown in sterile 

conditions chambers at 25°C in 16/8 light and dark cycle until the completion of the life cycle. 

Harvested seeds were selected for glufosinate ammonium (herbicide) resistance. Overexpression 

(OX) lines were grown from resistant seeds, until the completion of 3 generations (T3). 

Plant growth quantification. 

Arabidopsis thaliana seeds of wild-type (WT) and transcription factor overexpression (OX) 

genotypes were sown on agar plates containing five WT and five OX seeds per plate under two 

treatment conditions: control (sulfur sufficient, S+), which consisted of half-strength Murashige 
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& Skoog medium (MS) (Murashige and Skoog, 1962) and sulfate-deficient (S-), in which sulfate 

salts in the MS medium were replaced with equivalent chloride salts. The plants were grown 

vertically in a sterile growth chamber for two weeks at 25 °C with a 16/8 light-dark cycle. We 

used fifteen replicates per growth condition, since the seedlings from these treatments were used 

for qPCR quantification, RNA-seq analysis, sulfur content and phenotype quantifications.  

Phenotypic measurements, such as root length and total aerial organs area, were taken under 

control and sulfate deficit treatments. Plant images were captured using an EPSON Perfection 

V700 scanner and analyzed in ImageJ v.52  (Abramoff et al., 2004). 

Sulfate content analysis. 

Using Arabidopsis seedlings from the phenotype analysis, total sulfur concentration was 

calculated using the turbidimetric method described by Tabatabai and Bremne (Tabatabai and 

Bremner, 1970). Briefly, three biological replicates with 700-1000mg of fresh tissue were frozen 

and pulverized with liquid nitrogen. Ground samples were incubated in 0.1M HCl solution for 2 

hours, then 1 ml of the supernatant was divided into glass tubes with 200 ul of Gelatin-BaCl 

solution and incubated for an additional hour. Next, 200 µl of each sample was placed into a 96-

well microplate in triplicate. The absorbance at 452 nm was measured using a plate reader 

(Infinite® M200 pro-i-control), the calculation of total sulfur content was obtained by regression 

curves with known standards. 

Quantitative real-time PCR (qPCR) 

Total RNA was extracted from whole seedlings of two Arabidopsis thaliana genotypes: wild 

type (WT) and overexpressing (OX) the SlEIL3 TF. Seedlings were grown under two treatment 

FRQGLWLRQV��VXOIXU�VXIILFLHQW��FRQWURO��6ၰ���FRQVLVWLQJ�RI�KDOI-strength Murashige & Skoog (MS) 

medium (Murashige and Skoog, 1962), and sulfate-deficient (S-), in which sulfate salts in the 
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MS medium were replaced with equivalent chloride salts. Two weeks after sowing, seedlings 

were harvested, flash-frozen in liquid nitrogen, and stored at -80°C until RNA extraction. Total 

RNA was isolated using the mirVana miRNA Isolation Kit (Invitrogen) according to the 

PDQXIDFWXUHU¶V�SURWRFRO�IRU�WRWDO�51$�LVRODWLRQ��*HQRPLF�'1$�FRQWDPLQDWLRQ�ZDV�HOLPLQDWHG�

by on-column DNase I treatment following the TURBO DNase (Invitrogen) protocol. RNA 

integrity and concentration were assessed using a NanoDrop spectrophotometer (Thermo 

Fisher), and RNA quality was further verified by agarose gel electrophoresis. For cDNA 

synthesis, 500 ng of total RNA was reverse transcribed using the 5X All-In-One RT MasterMix 

(Applied Biological Materials, Canada) according to the maQXIDFWXUHU¶V� LQVWUXFWLRQV�� 7KH�

resulting cDNA was diluted 1:5 in nuclease-free water before use in qPCR reactions. qPCR was 

performed using PowerUp SYBR Green Master Mix (Applied Biosystems�) with 25 ng of 

cDNA per reaction in a QuantStudio 1 Real-Time PCR System (Thermo Fisher).  

Raw fluorescence data were processed using Real-Time PCR Miner 4.0 (Zhao and Fernald, 

2005) to calculate cycle thresholds (Ct values) and gene-specific amplification efficiencies. Gene 

expression levels were normalized to the reference gene Ubiquitin 1 (UBQ1, AT3G52590) using 

WKH�ǻǻ&W�PHWKRG� (Livak and Schmittgen, 2001). Three biological replicates, each with three 

technical replicates, were analyzed per condition. Statistical significance of differential 

H[SUHVVLRQ�EHWZHHQ�FRQGLWLRQV�ZDV�GHWHUPLQHG�XVLQJ�D�VWXGHQW¶V�W-WHVW�ZLWK�SRVW�KRF�7XNH\¶V�

test, depending on the number of comparisons. Graphical representation of relative gene 

expression was performed using R (ggplot2 package). 

Transgenic plants RNA-Seq data analysis 

We used the RNA-seq extracted from Arabidopsis thaliana genotypes: wild type (WT) and 

overexpressing (OX) the SlEIL3 from previous section. Genomic DNA contamination was 



44 
 

eliminated by on-column DNase I treatment following the TURBO DNase (Invitrogen) protocol. 

RNA integrity and concentration were assessed using a NanoDrop spectrophotometer (Thermo 

Fisher), and RNA quality was further verified by agarose gel electrophoresis. One microgram of 

DNase I-treated RNA was used to generate poly-A-enriched sequencing libraries using the Tru-

Seq Stranded mRNA Library Prep kit (Illumina). Libraries were sequenced as 150 paired end 

reads on a NextSeq500 system (Illumina). 

 

Raw reads for each library was preprocessed, adapters sequences were trimmed, and low-quality 

reads (reads with average quality inferior to q<30 and shorter than 20 bases) were dismissed 

using Cutadapt v.4.9 (Martin, 2011). Each library was pseudo-aligned to Arabidopsis thaliana 

transcript annotations (TAIR10) (adding the cDNA sequence of SlEIL3 to be mapped onto) using 

kallisto v0.44 (Bray et al., 2016), and the resulting counts were normalized to Transcripts Per 

Million (TPM). differentially expressed genes (DEGs) between different genotypes, treatments 

and the interaction of both factors were identified using the DESeq2 package (Love et al., 2014), 

with an adjusted p-value threshold of p<0.05. The z-score normalized expression values of DEGs 

were subjected to k-means clustering to identify distinct expression patterns. The analysis was 

conducted in an R environment, using the kmeans clustering function. Z-score normalization was 

applied to the expression matrix prior to clustering to ensure comparability across genes. 
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VI.   RESULTS 

 

1. To generate organ-level reference Gene Regulatory Networks models for Solanum 

lycopersicum. 

 

Rationale:   Generation of GRNs that integrate different lines of evidence of TF-target regulation 

at a global scale is a common approach to identify central regulators of cellular processes. These 

GRNs are available for model organisms, such as human, mouse, fly, or plants like Arabidopsis 

(Ravasi et al., 2010; Ramírez-González et al., 2018; Harrington et al., 2020; De Clercq et al., 

2021; Shanks et al., 2022). However, in the case of tomato, no GRN models are currently 

available, making the identification of these central TFs a challenging task. In our work, we aim 

to identify GRNs and central TFs controlling the sulfate deficiency response, comparing these 

networks in tomato roots and leaves. Thus, as a first aim in our work, we developed reference 

GRN models at an organ level in roots and leaves and extended our work generating similar 

GRNs for fruits, flowers and seeds, for the use of the plant community. 

 

   1.1   Updating Solanum lycopersicum genes and functional annotation. 

The most recent genome data available in the SolGenomics Network database (Fernandez-Pozo 

et al., 2015) is the SL4.0 genome assembly (Hosmani et al., 2019), together with the ITAG4.1 

annotation released in January 2020. While we initially aimed to use ITAG4.1, an RNA-seq 

alignment revealed the loss of 3,393 gene models compared to the previous ITAG4.0 version, 

including key functional genes like RIPENING-INSENSITIVE (RIN). To prevent the omission 
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of relevant genes, we developed a new annotation by integrating ITAG4.0 and ITAG4.1 gene 

models, resulting in a total of 37,467 genes. Based on this gene list and given that only 15.53% 

of tomato genes had a functional annotation in ITAG4.0, we performed a functional annotation 

by dataset integration. These included assigning GO terms from a mapping analysis using 

EggNOG-mapper(Cantalapiedra et al., 2021), obtaining the tomato annotations compiled in 

PLAZA 5.0 (Van Bel et al., 2022),  as well as retrieving GO annotations from an Interproscan 

analysis (Jones et al., 2014) of predicted tomato proteins. We achieved a 65% functional 

annotation coverage, with 25,689 genes assigned to at least one GO term, for a total of 509,559 

annotations (Table 1; Supplementary Table 1).   

 

     The tomato transcription factor (TF) list was updated by integrating evidence from multiple 

sources. This involved reviewing annotations and GO terms, retrieving TF catalogs from various 

repositories, and conducting orthologous TF analyses using Arabidopsis thaliana TF lists. Only 

TFs supported by at least three lines of evidence were selected, resulting in a curated set of 1,840 

TFs for further analyses (Table 1, Supplementary Table 2). DNA-binding preferences were 

determined by retrieving position weight matrices (PWMs) from CisBP (Weirauch et al., 2014) 

or assigning PWMs from Arabidopsis and Maize orthologs in CisBP and JASPAR (Castro-

Mondragon et al., 2022), yielding 846 TFs with assigned PWMs (Supplementary Table 2). 
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TABLE N°1. Summary of Tomato Gene Annotations. Overview of total gene counts, 

transcription factors (TFs), and Gene Ontology (GO) annotations for each tomato genome 

assembly. 

 

Source Genome 
assembly 

 Total 
genes 

Total 
TFs 

Genes with GO 
annotations 

ITAG2.4 Sl2.0 30130 1847 19663 
ITAG3.0 Sl3.0 34658 1500 - 
ITAG4.0 Sl4.0 34075 1781 5845 
ITAG4.1 Sl4.0 34688 2486 13142 

ITAG4.1c Sl4.0 37468 1840 25689 
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   1.2   Gene expression patterns in tomato demonstrate an organ-level component 

     As a first step to generate organ-level GRNs for tomato, we performed a search for available 

Solanum lycorpersicum RNA-seq datasets in the Sequence Read Archive (SRA) database of the 

National Center for Biotechnology Information (NCBI) (https://www.ncbi.nlm.nih.gov/sra/). 

The transcriptomic libraries (SRA runs) were categorized into five main organs: roots (1,840 

runs from 124 studies), leaves (3778 runs from 279 studies), flowers (568 runs from 55 studies), 

fruits (4149 runs from 147 studies), and seeds (270 runs from 13 studies). These libraries 

encompass diverse tomato genotypes and growth conditions, providing a robust dataset for 

generating reference GRNs that can be applicable to address different research questions. After 

applying quality filters, 10,510 libraries were retained for further analysis (Supplementary Table 

3). 

     Reads were mapped to gene models using the ITAG4.1c annotation, and genes with 

expression levels above 5 TPM in more than 10% of the total libraries for a given organ were 

considered as expressed in that organ. We found that 26,922 genes (71.85%) are expressed in at 

least one of the organs, with most genes found expressed across all organs. Smaller subsets are 

shared between multiple organs, while a minor fraction exhibit organ-level expression (Figure 

4a). Similar expression patterns have been reported in maize, flaxseed and wheat (Huang et al., 

2018; Ramírez-González et al., 2018; Qi et al., 2023). Examples of specific genes include 

Solyc06g051770 and Solyc10g047720 in seeds, whose Arabidopsis homologs, Oleosin 1 and 2 

(AT4G25140, AT5G40420) (OLEO1-2), are involved in seed oil body formation (Siloto et al., 

2006).  In roots, we identified SULTR1;1 (Solyc10g047170), which encodes a sulfate transporter 

associated with external sulfate uptake (Takahashi et al., 2000). In flowers, Tapetum 

Determinant 1-like (TPD1-like) paralogs such as Solyc11g005500, Solyc12g009850, 
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Solyc05g010190 and Solyc04g071640 were specifically expressed, consistent with their role in 

tapetal cell development and gametogenesis (Ezura et al., 2017). In leaves, we found Longifolia 

1 (SlLNG1, Solyc02g089030), whose Arabidopsis homolog LNG1 (AT5G15580) influences leaf 

morphology (Lee et al., 2006) (Figure 4a).  

     Concerning TFs, 1609 (87.6%) were expressed in at least one organ. Among them, 1016 

(63.2%) were expressed across all organs, while a smaller subset of 232 TFs exhibited organ-

level expression (Figure 4b). This latter group includes  SlBRC1a and SlBRC1b 

(Solyc03g119770 and Solyc06g069240), paralogs of Arabidopsis BRANCHED1, involved in leaf 

and axillary bud development (Martín-Trillo et al., 2011), SlFER (Solyc06g051550) a key 

regulator of root iron uptake (Aviña-Padilla et al., 2023), SlWUSCHEL (WUS, Solyc02g083950), 

which controls floral meristem identity and development (Hawar et al., 2022), SlSHINE2 (SHN2, 

Solyc12g009490), encoding a TF that controls epidermal growth in developing fruits (Bres et 

al., 2022), and two Arabidopsis ABI4 paralogs (Solyc03g095977 and Solyc03g095973) that 

exclusively expressed in seeds, consistent with their role in seed vigor (Bizouerne et al., 2021).  

While most TFs and genes were expressed across all organs, their expression levels varied 

substantially depending on the organ analyzed (Figure 4c-d). These quantitative differences 

suggest organ-level regulatory mechanisms, where distinct expression patterns contribute to the 

specialized functions and characteristics of each organ. 
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FIGURE N°4. Organ-level transcriptomic landscape in tomato. (a) Distribution of expressed 
genes across organs. (b) Distribution of expressed transcription factors (TFs) across organs. (c) 
Heatmap of normalized (Z-scored) gene expression levels across organs. (d) Heatmap of 
normalized (Z-scored) TF expression levels across organs. (e) Enriched biological process Gene 
Ontology (GO) terms associated with expressed genes across organs (adjusted p-value < 0.05). 
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      To assess how gene expression in tomato organs relates to possible biological processes, we 

performed a Gene Set Enrichment Analysis (GSEA) for each organ. The analysis revealed that 

most enriched biological processes (151 GO terms) were common across all organs (adjusted p-

value < 0.05) (Figure 4e), including terms such as gene expression regulation, circadian rhythm, 

vacuole and vesicle organization, immune responses, mRNA methylation and response to 

abscisic acid (Supplementary Figure 1). In contrast, only 22 enriched GO terms were identified 

as unique for each organ. These include processes related to fruit ripening in fruits, root meristem 

identity and response to reactive oxygen species in roots, phototropism and photoperiodism in 

leaves, shoot apical meristem identity, brassinosteroid signaling, and pollen tube guidance in 

flowers as well as lipid storage and seed development in seeds (Supplementary Table 4). These 

findings demonstrate that, while important vital biological processes are conserved across all 

tomato organs, a subset of organ-level processes support their unique functions, emphasizing the 

specialized regulatory frameworks that govern organ identity and development in tomato. 

 

   1.3   Integrated tomato organ-level GRNs reveal enriched TF-Target interactions and 

local regulatory cascades. 

     We compiled a comprehensive dataset of tomato omics data for the GRNs generation, 

encompassing over 10,000 transcriptomes, nearly 100 chromatin accessibility experiments, and 

16 ChIP-seq libraries (Figure 5).  To generate organ-level GRNs, we utilized the GENIE3 

algorithm using the processed mRNA-seq count tables categorized by organ and the updated TFs 

list as input. GENIE3 generated a ranked list of putative TF-target interactions, from which we 

selected the top 1%, 2%, 5%, 8% and 10% of the highest-scoring interactions to evaluate the 

networks accuracy. The inferred organ-level networks were benchmarked against high-quality 
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in vivo ChIP-seq datasets that met ENCODE standards for tomato TFs, only 8 ChIP-seq 

experiments surpassed the quality filters of non-redundant Fraction and PCR Bottlenecking 

Coefficients(Hitz et al., 2023), the TFs: GLK1-2 (Solyc07g053630, Solyc10g008160) (Tu et al., 

2022), MYC2 (Solyc08g076930) (Du et al., 2017), JMJ4 (Solyc08g076390) (Ding et al., 2022), 

WOX13 (Solyc02g082670) (Jiang et al., 2023), EIL4 (Solyc06g073730), TAGL1 

(Solyc07g055920) and RIN (Solyc05g012020) (Fujisawa et al., 2011; Gao et al., 2019) 

(Supplementary Table 5).  Each GENIE3 network was compared against a ChIP-seq derived 

network through enrichment tests, based on the expression levels of the TFs in each organ. 

GLK1-2, MYC2, EIL4, JMJ4, and WOX13 binding targets were used across all organ networks, 

while RIN and TAGL1 were not used on the root and leaf networks, given their specific 

reproductive organ-level expression pattern. 
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FIGURE N°5. Multi-omics data used for generating organ-level GRNs in tomato. Overview 
of datasets used to generate organ-specific gene regulatory networks (GRNs) in Solanum 
lycopersicum. Bar plots indicate the number of available datasets per organ for transcriptomics 
(RNA-seq), chromatin accessibility (ATAC-seq/DNase-seq), and transcription factor binding 
sites (ChIP-seq). Arrows illustrate data flow into regulatory network construction, including 
GRNs, co-expression networks (GCNs), TF-binding networks, and validation datasets. 
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     The top 2% networks showed the highest enrichment (indicated by higher log2-transformed 

Fisher odds ratios) and statistical significance (lower log10-transformed adjusted p-values) in the 

overlap between GENIE3-identified TF-target pairs and the ChIP-seq validation dataset (Table 

2, Supplementary Table 6). The distribution of node degree values also shows a scale-free 

topology with a power-law distribution, frequently exhibited by real-world networks including 

biological networks (Albert, 2005; Khanin and Wit, 2006) (Supplementary Figure 2). 

Furthermore, comparison with existing tomato gene networks from PlantRegmap (Tian et al., 

2020) and TomatoNet (Kim et al., 2017) demonstrated that the GENIE3-derived GRNs exhibited 

greater enrichment and overlap with the gold-standard dataset, indicating a better performance 

in predicting TF-target interactions obtained experimentally (Supplementary Table 7).      

 

      To further evaluate the performance of the top 2% GRNs, we calculated the AUROC (Area 

under the receiver Operating Characteristic) and AUPR (Area under the precision-recall curve) 

for each organ-level network and compared these values against a network consisting of TF-

target interactions obtained from the ChIP-seq validation dataset. The GRNs derived from 

tomato roots, leaves, flowers, fruits and seeds libraries showed statistically higher AUROC and 

AUPR values than randomly generated TF-target pairs (Table 2, Supplementary Figure 3). These 

results confirm that the GRNs successfully recapitulate experimentally validated TF-target 

interactions, underscoring their utility in predicting regulatory interactions for TFs lacking 

experimental validation. 
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TABLE N°2. Enrichment metrics for organ-level GRNs. Summary of enrichment metrics 
for organ-specific GRNs, considering the top 2% of interactions identified by the GENIE3 
algorithm. Enrichment results obtained from D�)LVKHU¶V�H[DFW�WHVW�WKDW�DVVHVVHG�JHQH�VHW�RYHUODS�
significance, reporting log2 fold change, p-value, and intersection size to the validation 
network (ChIp-seq). -inf represents logၶၵ adjusted p-values < -400. 
 

 

  Root Leaf Flower Fruit Seed 
Total TFs  1,297 1,216 1,300 1,058 1,241 

Total Genes 23,226 22,511 23,988 20,888 23,124 
Total edges 797,120 743,902 798,851 665,116 817,504 

log2 Fisher odd ratio 1.89 2.66 2.01 3.01 2.22 
log10 adj p-value -156.72 -inf -196.33 -305.17 -inf 

Genes in Overlap 1714 2967 1912 2226 4204 
AUROC 0.72 0.65 0.65 0.72 0.53 

AUPR 0.51 0.45 0.46 0.52 0.32 
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     To further strengthen the robustness of our GRNs, we incorporated additional layers of 

regulatory evidence into the TF-target interactions identified by GENIE3. Gene co-expression is 

widely used to infer biologically relevant relationships between genes (Wolfe et al., 2005; Yin 

et al., 2021). Using the same RNA-seq datasets, we generated aggregated gene co-expression 

networks (GCNs) following Orduña et al., (2023) protocol. Then, we extracted the TF-target 

pairs from each GCN as supporting evidence for the GENIE3-predicted interactions. Notably, 

organ-level TF-target interactions identified through co-expression analysis showed significant 

correlation with those inferred by GENIE3 (Supplementary Figure 4). While the GENIE3 

algorithm predicts regulatory interactions based on expression patterns, additional evidence is 

necessary to determine whether these interactions occur via direct TF binding to regulatory 

sequences, leading to the generation of two TF-binding networks. To integrate TF-binding 

information into the GENIE3 networks, we extracted upstream sequences (2 Kb from the 

transcription start site) for each annotated gene on ITAG4.1c and performed TF-binding motif 

prediction using the FIMO tool part of the MEME suite (Grant et al., 2011). Additionally, we 

conducted the same analysis on sequences within open chromatin sites (OCSs) identified in 

tomato fruit, flower, leaf, and root organs, using data from reanalyzed DNase-seq and ATAC-

seq experiments (Supplementary Table 8). 

     The results from all evidence layers were compiled, ensuring that our analysis remained 

strictly constrained to TF-target pairs identified by GENIE3. This approach maintained the 

predefined network structure, with additional regulatory evidence mapped onto it rather than 

introducing new interactions. We found that between 51% and 61% of GENIE3-predicted 

interactions were supported by at least one independent source, with most edges validated by 

one or two complementary approaches. Specifically, co-expression analysis confirmed 
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approximately 20% of the GENIE3-predicted interactions (Figure 6a). Furthermore, a substantial 

portion of GRN edges was validated by the presence of cis-binding motifs detected by FIMO 

within promoter sequences or OCSs. 

     As previously mentioned, most genes and TFs were expressed across all tomato organs, 

although differences exist between gene expression levels. To assess how these patterns 

influence regulatory interactions, we examined the distribution of TF-target gene pairs across 

the five organ-level GRNs. Over 75% of these pairs were unique to a single organ (Figure 6b), 

indicating that while TFs and targets are broadly expressed, the GENIE3 algorithm assigns 

regulatory relationships based on expression levels differences, leading to organ-level regulatory 

SDLULQJV�� 7KLV� GLVWLQFWLRQ� DULVHV� IURP� WKH� DOJRULWKP¶V� VFRULQJ�� ZKHUH� RQO\� WKH� WRS� ��� RI�

interactions were retained per network. These findings suggest that organ-level regulatory 

pairings are dictated by expression-dependent scoring, with most TFs exhibiting distinct 

regulatory interactions across organs.  To further evaluate how specific TF-target pairs distribute 

across organs and how target conservation correlates with TF connectivity, we calculated the 

percentage of conserved targets for each TF across all organs. As expected, most TFs showed 

low target conservation due to the organ-level nature of TF-target interactions (Figure 6c).  A 

GSEA of the targets of these highly connected-highly conserved TFs across organ-specific 

networks revealed a significant enrichment for GO terms associated with essential cellular 

processes, such as nucleic acid metabolism, vesicle transport, and RNA metabolism (FDR 

adj.p.val< 0.05). These findings indicate that TFs with high connectivity and target conservation 

may act as whole-plant regulators of fundamental cellular functions; in contrast, the organ-

specific TFs with fewer targets are likely to control tissue-specific processes. 
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FIGURE N°6. Comparative analysis of organ-level GRNs reveals regulatory signatures 
and TF connectivity patterns. (a) Stacked bar plot of the proportion of supporting evidence for 
TF-target pairs of the GENIE3-inferred GRN. Evidence categories include GENIE3 predictions 
(G3), open chromatin site binding (OCS), GCNs (Coex), and promoter binding predictions 
(Promo). Darker shades indicate interactions supported by multiple evidence sources. (b) UpSet 
plot displaying the overlap of TF-target interactions across organ-specific GRNs, with an inset 
showing the distribution of shared versus unique interactions. (c) Relationship between TF mean 
connectivity (average number of target genes across organs) and target conservation (proportion 
of shared targets across organs). A black trend line highlights the general pattern in the data. 

 

 

 

 

Figure 1. Integrative organ-specific GRNs reveal details about 
TFs connectivity and shared regulatory relationships across 
organs. 
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   1.4   The fruit GRN captures known regulatory interactions and identifies novel central 

controllers of ripening. 

     To evaluate the ability of the organ-level GRNs to capture biologically relevant regulatory 

interactions, we focused on ripening, one the most extensively studied processes in tomato, 

linked to hormonal signaling pathways such as ethylene and abscisic acid (ABA), cell wall 

remodeling and other processes (Karlova et al., 2014; Kou et al., 2021). Tomato fruit ripening is 

governed by a complex regulatory cascade, involving epistatic interactions between well-

characterized TFs, including APETALA2a (AP2a), NON-RIPENING (NOR), FRUITFULL 

(FUL1/TDR4 and FUL2/MBP7), TOMATO AGAMOUS-LIKE 1 (TAGL1), RIPENING 

INHIBITOR (RIN) and COLORLESS NON-RIPENING (CNR) (Kou et al., 2021; Li et al., 

2021).  Among these, TAGL1 and RIN are recognized as central regulators of ripening, with 

their roles supported by multiple ChIP-seq studies (Kou et al. 2021; Li et al. 2021). 

     To determine whether the fruit GRN reproduced regulatory interactions of known TFs, we 

compared the targets of TAGL1 and RIN (TFs exclusively expressed in fruits) from the GRN 

with gene lists compiled from previous omics studies. These included differentially expressed 

genes (DEGs) identified in TAGL1 and RIN knockout and RNAi plants (Li et al., 2018; Gao et 

al., 2019; Ito et al., 2020), as well as direct binding targets identified via RIN ChIP-chip and 

ChIP-seq (Fujisawa et al., 2013; Zhong et al., 2013; Gao et al., 2019), and TAGL1 ChIP-seq 

(Gao et al., 2019) experiments. For RIN, we observed a statistically significant overlap of the 

targets determined in our fruit GRN with targets obtained in all the experiments, including ChIP-

binding targets and regulatory targets identified in RIN-deficient plants (Figure 7a). This finding 

highlights the potential of the GENIE3 GRN to capture experimentally validated regulatory 

interactions, with many of these corresponding to direct binding of a TF to a target promoter 
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(45% of RIN GRN targets (411/857) and 89% of TAGL1 GRN targets (740/827) are validated 

by ChIP binding evidence (Figure 7b).  

     To further investigate the regulatory roles of RIN and TAGL1 in fruit ripening, we generated 

two subnetworks focusing on the target genes from the 98 ripening-associated genes identified 

by Kou et al., (2021). Furthermore, most of the GENIE3 edges connecting RIN and TAGL1 to 

these targets genes (90% for RIN and 100% for TAGL1) are supported by ChIP evidence (Figure 

7c-d). Additionally, the subnetworks highlight the broad regulatory influence of RIN and 

TAGL1 across diverse biological processes and their interactions with key TFs such as CNR, 

NOR, and AP2.  

To identify potential novel ripening regulators, we analyzed the TFs connected to the 98 

ripening-associated genes and their functions (Kou et al., 2021). We applied the Integrated Value 

of Influence (IVI) (Salavaty et al., 2020), a metric centrality measures such as degree centrality, 

neighborhood connectivity, betweenness centrality, and collective influence into value that 

quantify hub influence (Salavaty et al., 2020). The analysis confirmed that recognized TFs such 

as CNR, NOR, FUL1, FUL2, AP2a, RIN, and TAGL1 are central regulators of fruit ripening 

genes. Notably, two additional TFs, SlARF2A (Solyc03g118290) and SlERF.E2 

(Solyc06g063070), emerged as major hubs with high IVI, thus as potential regulatory role 

controlling ripening-related genes (Supplementary Table 9). The SlARF2A has been identified 

as a regulator of axillary shoot development (Xu et al., 2016) and is expressed in the late stages 

of ripening. RNAi lines targeting SlARF2A exhibit ripening defects and ethylene insensitivity, 

while overexpression (OX) lines show accelerated and uneven ripening (Hao et al., 2015; Breitel 

et al., 2016). In contrast, SlERF.E2 is linked to key ripening regulators and ripening-associated 
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genes, as its expression is downregulated in cnr, nor, and rin mutants. However, its function 

remains unknown (Liu et al., 2016). 

 

FIGURE N°7. Identification of key transcriptional regulators of fruit ripening regulatory 
cascades in tomato. (a±b) Enrichment and validation of fruit GRNs for RIN (a) and TAGL1 (b) 
using knockout mutant data and ChIP-seq analyses. Box heatmaps display enrichment obtained 
IURP�D�)LVKHU¶V�H[DFW� WHVW� �ORJ�� IROG�FKDQJH��S-value, and intersection size) to the validation 
network (ChIp-binding). (c±d) Network representation of ripening-associated TF-target 
interactions for RIN (c) and TAGL1 (d) derived from the fruit GRN. Triangles represent TFs, 
squares represent target genes. Node colors indicate function. Borders and edges are colored in 
red (RIN) or blue (TAGL1) when interactions are validated by ChIP-seq evidence. (e) Network 
of key regulators of ripening-associated genes (adapted from Kou et al., 2021), applying the 
same node and edge color scheme as in (c±d). Edge darker shades indicate accumulated 
regulatory evidence. 
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      A GSEA of the target genes for the two TF candidates revealed a significant enrichment in 

the fruit ripening process (adjusted p-value < 0.05) (Supplementary Figure 5). Using both 

established and newly uncovered TFs, along with ripening-relevant target genes, we developed 

a fruit ripening GRN to provide a comprehensive view of the impact of key TFs on the expression 

of ripening associated genes (Figure 7e). Our network analysis reveals that SlARF2A and 

SlERF.E2 may act upstream on important TFs such as AP2, NOR, and CNR, providing a novel 

perspective on the fruit ripening regulation cascade. These findings show the potential of GRNs 

to recapitulate transcriptional hierarchies driving complex biological processes, as well as new 

insights into the regulatory mechanisms that control fruit ripening. 

         

   1.5   Tomato organ-level GRNs validate the role of ABF TFs on abscisic acid (ABA) 

regulatory cascades and identify new regulators of ABA-related genes.    

     Abscisic acid (ABA) is a key plant hormone involved in the regulation of seed dormancy, 

germination, seedling development, root growth, flowering, and responses to abiotic and biotic 

stresses (Vishwakarma et al., 2017; Krukowski et al., 2023)��1RWDEO\��WKH�*2�WHUP�³UHVSRQVH�WR�

$%$´� ZDV� consistently enriched across all organ-level GRNs (Supplementary Figure 6), 

highlighting its central role in plant growth and development. This category includes 730 genes, 

91.3% of which are ubiquitously expressed in tomato organs (Supplementary Table S10, 

KHUHDIWHU� UHIHUUHG� DV� ³$%$-UHODWHG� JHQHV´). The AREB/ABF (ABA response element 

binding/ABA response element binding factor) family of bZIP TFs mediates ABA signaling 

(Uno et al., 2000; Krukowski et al., 2023); however, their role in organ-level regulation remains 
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unclear. To address this, we generated organ-level GRNs for the ten ABF TFs identified in 

tomato (Pan et al., 2023), focusing specifically on their regulation of ABA-related genes. While 

most ABF family members are expressed at similar levels across organs, except for SlABF6 (not 

expressed in flowers) and SlABF7 (not expressed in fruits and leaves), their regulatory potential 

differs. Specifically, SlABF1 and SlABF4 appear to play key roles in regulating ABA-related 

genes in fruits, whereas SlABF2, SlABF3, SlABF5, and SlABF10 regulate more genes in the leaf 

GRN. SlABF5, SlABF9, and SlABF10 are involved in ABA regulation in roots, while SlABF2 

seems to play a substantial role in the flower GRN. For seeds, SlABF6 and SlABF7 exhibit the 

most regulatory activity on ABA-related genes (Figure 8a). These findings point out that the 

ABF TFs have specific patterns of regulation of ABA-related genes.  

     Plant drought regulation is closely linked to ABA (Kang et al., 2002; Krukowski et al., 2023). 

To validate the regulatory predictions from our GRNs, we focused on two TFs, SlABF3 and 

SlABF5, which have been identified as relevant regulators of drought responses (Kang et al., 

2002; Hsieh et al., 2010).  Using the leaf GRN, we extracted the predicted targets of both TFs 

and compared them to the DEGs found in a transcriptome analysis of leaves from drought-

exposed plants (Wang et al., 2023b). Our analysis revealed a significant enrichment of drought-

responsive genes among the targets of both TFs (Figure 8b). Next, we generated two GRNs by 

focusing on ABA-related genes. Our analysis revealed a significant enrichment of drought-

responsive genes among the targets of both TFs (Fig. 5B, Supplementary Table S16). We found 

that 284 out of 410 (~69%) ABF5 targets and 63 out of 168 (~38%) ABF3 targets overlapped 

with drought-responsive DEGs. Additionally, 14 out of 22 (~64%) ABF3 targets and 35 out of 

45 (~78%) ABA-relevant genes were also present among the drought DEGs. The GRN also 

indicated that both TFs regulate multiple ABA signaling genes encoded by protein phosphatase 
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class 2 C (PP2C) genes (Kang et al., 2002; Fujii et al., 2009; Krukowski et al., 2023), including 

Solyc03g121880 and Solyc05g052980 (regulated by both TFs), and Solyc03g096670 and 

Solyc06g076400 (regulated specifically by SlABF5). Furthermore, we observed a potential 

feedback regulatory mechanism between SlABF3 and SlABF5 (Figure 8B). These findings 

highlight the key roles of SlABF3 and SlABF5 in the ABA-related drought regulatory cascades 

(Hsieh et al., 2010; Kang et al., 2002; Pan et al., 2023) and demonstrate how the GRNs can 

recapitulate known important regulatory pathways in hormone responsive regulatory cascades. 

    To identify novel regulators of ABA-related genes beyond the ABF family across all organs, 

we filtered the five organ-level GRNs to retain TFs with regulatory connections to ABA-related 

genes. A network analysis calculating the Integrated Value of Influence (IVI) (Salavaty et al., 

2020) of the network hubs identified SlGBF3 (Solyc01g095460) as one of the top 10 most 

influential TFs in the ABA-related networks across all organs (Supplementary Table 11). The 

SlGBF3 has recently been found to be co-expressed with drought-responsive genes in tomato 

leaves (Bortolami et al., 2024), but its direct regulatory effect in tomato regulatory cascades 

remains unexplored. Notably, SlGBF3 is an ortholog of the Arabidopsis gene AtGBF3 

(AT2G46270), a TF associated with drought tolerance and ABA insensitivity in Arabidopsis 

(Ramegowda et al., 2017; Dixit et al., 2019). To further explore the role of SlGBF3, we 

performed a GSEA on its target genes in each organ-level GRN. We found a significant 

HQULFKPHQW�RI�JHQHV�EHORQJLQJ�WR�WKH�³UHVSRQVH�WR�DEVFLVLF�DFLG�VWLPXOXV´�VKDUHG�DFURVV�DOO�RUJDQ�

networks, indicating a potential conserved role in the regulation of ABA-related genes (adjusted 

p-value< 0.05) (Figure 8c). In the leaf GRN, over 60% of the targets of SlGBF3 were identified 

as drought stress-responsive genes, including PP2C genes (Solyc03g121880, Solyc03g096670, 

Solyc05g052980, Solyc06g076400), two SNF1-related protein kinases 2 (SnRK2)  genes 
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(Solyc08g077780, Solyc04g012160). Additionally, this TF may act upstream of key TFs such as 

SlABF2, SlABF3, and SlABF5 (Figure 8d). In other organ-level networks, SlGBF3 targets 

smaller subsets of PP2C genes, and other TFs, such as MYB1 (Solyc12g099120), a TF 

implicated in pathogen susceptibility (Abuqamar et al., 2009) (Supplementary Figure 6). This 

result suggests a conserved regulatory role of SlGBF3 across different organs, reinforcing its 

significance in ABA-mediated stress responses. 

Our findings confirm the GRNs potential to recapitulate important ABA transcriptional 

regulators and its capacity to discover new potential key regulators; the SlGBF3 can be 

considered a promising candidate for further studies.  
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FIGURE N°8. Tomato GRNs reveal the role of ABF TFs and identify a key regulator of 
ABA-related GRNs. (a) Bar plots showing organ-specific expression levels and the number of 
ABA-related target genes regulated by ABF TF. Bars indicate target counts, while black lines 
UHSUHVHQW�ORJၶၵ�730�H[SUHVVLRQ�YDOXHV���b) Enrichment and validation of leaf GRNs for ABF3 
and ABF5 using differentially expressed genes (DEGs) from drought-stressed leaves (Gao et al., 
2019)�� %R[� KHDWPDSV� �OHIW�� GLVSOD\� HQULFKPHQW� UHVXOWV� IURP� D� )LVKHU¶V� H[DFW� WHVW� �ORJ�� IROG�
change, p-value, and intersection size). The networks (right) show distribution of ABA-related 
and drought regulated targets of these TFs. (c) Gene Set Enrichment Analysis (GSEA, FDR-
adjusted p-value < 0.05) of SlGBF3 target genes in organ-specific GRNs. Dot size represents 
gene number, while color intensity reflects enrichment values. (d) Network visualization of 
SlGBF3-regulated ABA-related genes in the leaf GRN. Triangles represent TFs, rectangles 
represent target genes. Node colors indicate function. Blue-bordered nodes indicate DEGs from 
drought-stressed leaves (Gao et al., 2019). Edge darker shades indicate accumulated regulatory 
evidence. 
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   1.6   TomViz- GRNs app: Online tool for tomato GRNs visualization. 

 

     To provide the scientific community with a comprehensive framework of tomato organ-level 

GRNs and a user-friendly resource, we have developed a public web platform featuring an 

interactive interface that allows users to explore the results of this study. Our GRN apps within 

the TomViz module of the PlantaeViz platform (https://plantaeviz.tomsbiolab.com/tomviz) 

adhere to the Findability, Accessibility, Interoperability, and Reusability (FAIR) principles 

(Santiago et al., 2024). Through the website app, users can interact with organ-level GRNs, 

select and subset network data for download (Figure 9a-c). The TomViz-GRNs app provides 

various features for data analysis. In the Regulatory Targets Tab, users can query individual TFs 

or genes to explore central regulatory TFs and their validation layers (Figure 9b). The D3 

Subnetwork Tab allows users to upload gene lists and generate GRNs based on specific queries. 

It categorizes data and enables an organ-level study of stress responses, helping to detect novel 

regulatory pathways and TFs involved in multiple regulatory cascades (Figure 9c). The TomViz-

GRNs app thus provides an intuitive platform for studying tomato gene regulation and 

investigating stress responses across different organs.   
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FIGURE N°9. TomViz-GRNs: A web-based platform for exploring tomato organ-level 
GRNs. (a) TomViz interface within the PlantaeViz platform (Santiago et al., 2024), providing 
access to GRN exploration tools. (b) Regulatory Targets Tab: Users can query TFs or genes to 
explore regulatory interactions and validation layers. The interface includes options to download 
TF target lists, perform GSEA, and visualize target distributions on a chromosome map. (c) D3 
Subnetwork Tab: Users can upload gene lists, visualize GRNs, and analyze regulatory pathways 
at the organ level. The visualization includes directional edges representing regulatory 
interactions from TFs to targets, with edge colors indicating the level of supporting evidence. 
Additional options allow customization of network layout and node separation. 
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2. To identify candidate TFs that are central regulators of the sulfate deficiency response 

in S. lycopersicum.  

 

Rationale: Identifying TFs that act as key regulators of specific biological processes is critical 

for understanding gene regulatory mechanisms. The purpose of this study is to identify candidate 

TFs that regulate the sulfate deficiency response in Solanum lycopersicum. Using the organ-

specific GRNs as foundational frameworks, as second aim of our thesis we analyzed the sulfate 

deficiency transcriptome at both time and organ-specific scales to create context-specific GRNs 

for tomato roots and leaves. By comparing root and leaf sulfate-responsive GRNs main hubs, we 

are able to identify TFs that control the regulatory cascades underlying the sulfate deficiency 

response.     

  

   2.1   Context-specific GRNs of sulfate deficiency of tomato roots and leaves  

      Primarily, to identify the GRNs underlying gene expression changes and the key regulators 

involved in the sulfate deficiency response in tomato plants. We reanalyzed the RNA-seq 

libraries from Canales et al., (2020), we obtained new results from the transcriptomes of tomato 

roots and leaves at 3 and 4 weeks after sowing under control and sulfate-deficient treatments, 

using the ITAG4.1C annotations. The analysis found 5,920 and 3,386 DEGs in roots and 5,847 

and 4,522 DEGs in leaves at 3 and 4 weeks, respectively. The results demonstrate that the 

majority of DEGs were downregulated after sulfate deficiency, with little overlap of genes 

between the different time points, thus transcriptome of tomato roots and leaves is affected in a 

time-specific and organ-specific manner as mentioned in Canales, et al. (2020) (Figure 10a). A 
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GSEA of the DEG lists revealed upregulated processes associated with molecular transport, 

sulfur deprivation responses, and amino acid metabolism that are shared across the organs. 

Sulfur amino acid metabolism and immunological responses were among the 

upregulated processes in the roots, while senescence was found exclusively enriched in the 

leaves (Figure 10b). In contrast, the downregulated biological processes included phytohormone 

responses (auxin and cytokinin), cell wall metabolism, and biomolecule catabolism, including 

amino acid catabolism. Additionally, processes involved in reactive oxygen species 

regulation were significantly downregulated in roots, whereas photosynthesis-related 

processes were enriched in the leaves DEG (Figure 10c). 
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FIGURE N°10. Reanalysis of RNA-seq libraries from tomato roots and leaves (Canales et 
al., 2020) under control and sulfate-deficient conditions at 3±4 weeks after sowing. (a) Bar 
plots illustrating shared and unique DEGs between time points (3w: three-week-old plants; 4w: 
four-week-old plants). (b) Gene set enrichment analysis (GSEA) results (FDR-adjusted p-value 
< 0.05) showing enriched GO terms for upregulated DEGs in response to sulfate deficiency. (c) 
GSEA results (FDR-adjusted p-value < 0.05) for downregulated DEGs in response to sulfate 
deficiency. 
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       To determine if the time-specific DEG may involve specific regulatory cascades or specific 

central TFs as key regulators during sulfate deficiency treatments, we filtered the root and leaf 

GRNs using the DEGs from tomato plants treated with sulfate deficiency 3±4 weeks after 

sowing. The networks were analyzed to determine centrality measures of the TFs. The 

distribution of clustering coefficients and outdegrees of the TFs show similar patterns, 

suggesting the networks have a similar topology, independent of the time point or organ of origin 

(Figure 11a-b). Interestingly, although the lists of DEGs differ between different time points and 

organs, we found that most TFs (1133 out of 1381 TFs) controlling these DEGs are shared, 

suggesting a common set of regulators in roots and leaves control sulfate-dependent gene 

expression, and that the rest TFs are only shared between organs (Figure 11c).  

    As shown in Aim 1, most TF-target pairs in tomato are organ-specific. We looked forward to 

determining whether this observation was also true for the subset of sulfate deficiency-

responsive genes, and whether time of treatment had an impact on the distribution of TF-target 

pairs. To address this, we performed an analysis of the distribution of specific TF-target pairs 

within sulfate context-specific networks, we found that, as previously shown, most pairings are 

dependent on the organ of origin (Figure 11d). Although we found some differences on TF-target 

pairs that were dependent on time, especially on the leaves network, most connections were 

shared between time points. Based on these findings, we decided to focus our analysis 

exclusively into the generation of two context-specific GRNs for roots and leaves, in order to 

search for key regulators of the sulfate deficiency response: a root network, consisting of all 

sulfate-deficiency DEGs occurring in roots at both time points, and a leaves network, consisting 

of all sulfate-deficiency DEGs occurring in leaves at both time points. 
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FIGURE N°11. TF analysis in context- and time-specific root and GRNs of sulfate 
deficiency-responsive genes. (a) Violin plot showing the outdegree distribution of TFs, 
highlighting connectivity differences across GRNs. (b) Violin plot showing the clustering 
coefficient distribution of TFs, emphasizing network modularity variations. (c) Venn diagram 
of overlaps among differentially expressed TFs in the specific GRNs. (d) Upset plot illustrating 
TF-target distributions across GRNs, integrating shared and unique regulatory interactions. 
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     In order to identify candidate TFs that may act as key regulators of the sulfate deficiency 

response in tomato roots and leaves, we ranked the TFs based on different criteria: node 

centrality, based on the influentially analysis performed with IVI (Salavaty et al., 2020); 

the percentage for sulfate-responsive target genes;  the log2 fold of change of the TF in response 

to sulfate deficiency (only positive values were included); the proportion of targets categorized 

as sulfate-related based on GO annotations (Genes extracted from the GO terms: GO:0000096, 

GO:0000101, GO:0000103, GO:0006790, GO:0008272, GO:0009970, GO:0010438, 

GO:0019379, GO:0019419, GO:0031335, GO:0042762, GO:0044272, GO:0044273, 

GO:0055063, GO:0072348, GO:1900058, GO:1902358). For each TF, we considered the top 

500 values per criterion and ranked them from highest to lowest and assigned scores depending 

on the position of each TF across the roots and leaves networks (Suplemmentary Tables 12-13). 

The top 15 TFs were put into a final matrix to produce a combined score that indicates the TF 

possible role as a key regulator of the sulfate deficiency responsive genes on tomato roots and 

leaves (Figure 12). 

          As the final aim of our work is to find key TFs involved in the regulation of the 

phenotypical changes associated with sulfate deficiency response treatments, we searched if the 

top ranked TFs had a known function or possible role involved in growth-related processes 

according to literature, if functionality is not documented, we extracted functional information 

available for their Arabidopsis thaliana orthologs, after an Orthofinder (Emms and Kelly, 2019) 

analysis and evaluate the functionality of the corresponding Arabidopsis TFs using data from the 

Arabidopsis information resource website (TAIR) (Berardini et al., 2015) (Supplementary Table 

14). Candidate TFs associated with growth regulation, stress responses, and sulfate deficiency 

were prioritized for further study (Figure 12). 
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FIGURE N°12. Heatmaps of ranked scores for the top 15 potential key TFs regulating 
sulfate deficiency responses. (a) Top 15 TFs in roots. (b) Top 15 TFs in leaves. Heatmaps 
display ranked scores based on selected criteria, with darker colors indicating higher scores. 
Adjacent bars represent total TF scores. Candidate TFs are marked with asterisks: green for leaf-
specific, brown for root-specific, and black for shared candidates. Criteria legend: FC_3w (log2 
fold change at 3 weeks), FC_4w (log2 fold change at 4 weeks), P.S_genes (proportion of sulfate-
important target genes), FIMO_Prom (predicted promoter-binding targets), FIMO_OCS 
(predicted OCS-binding targets), IVI_Snet (influentiality on sulfate-important genes), 
IVI_DEGnet (influentiality on DEG network), Coexp (proportion of coexpressed targets). 
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     We generated two sulfate deficiency context-specific GRNs to identify the most relevant 

regulators involved in sulfate deficiency responses, from these networks we isolated the edges 

representing the target genes involved in sulfur transport, metabolism and signaling cascade 

according to their GO annotations (sulfate-related GOs) and organized them into a TFs hierarchy 

based on nodes outdegree. The root-specific GRN included 4,088 nodes and 46,179 edges, while 

the leaf-specific GRN comprised 7,973 nodes and 137,988 edges. Of these edges, 82.14% of the 

root network and 42.12% of the leaf network were shared between organs. Additionally, 25,321 

(54.83%) of the root GRN edges, and 75,443 (54.67%) of the leaf GRN edges had one or more 

edges with validation evidence from the GCNs and TF-binding predictions. Furthermore, 

20.73% of the root network and 21.33% of the leaf network showed evidence of potential direct 

TF binding. The main hubs consisted of 73 TFs in top-tier regulatory positions, 10 of which were 

shared between organs, including all top TFs from the root network (Figure 13a-b).  The selected 

TFs in the ranked list (Figure 12) appear in the top tiers of hierarchy in the networks (Figure 13a-

b), we found that Solyc01g006650 (EIL3), Solyc04g072460 (TGA7), and Solyc10g086530 

(SCL14) were found as central TFs in both organ networks, while Solyc05g009720 (HHO) and 

Solyc08g078340 (KUA1) emerged as central controllers in roots and Solyc05g054650 (ZAT11) 

and Solyc02g071130 (WRKY71) were identified for leaves.  
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FIGURE N°13. Context-specific GRNs revealing TF hierarchy in sulfate deficiency 
responses. (a) Root GRN. (b) Leaf GRN. Highlighted groups: sulfate metabolization routes 
(green), sulfate metabolism (yellow), and sulfate transport (pink). Node color scale indicates 
mean log2 fold change value. Violet-bordered nodes indicate shared genes between networks. 
Black asterisks mark selected candidate TFs. Edge darker shades indicate accumulated 
regulatory evidence. 
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   2.2   Five candidate TFs are able to control multiple biological processes associated to 

sulfate deficiency treatments in tomato plants. 

 

     We conducted a GSEA analysis on the candidate key TFs by selecting their target genes 

identified in the sulfate-responsive GRNs to determine their enriched biological processes 

(adj.p.val< 0.05) (Figure 14 a-b). The shared key regulators EIL3, TGA, and SCL14 common to 

both root and leaf networks, showed the highest enrichment in biological processes such as 

³FHOOXODU�UHVSRQVH�WR�VXOIDWH�VWDUYDWLRQ�´�³VXOIDWH�DVVLPLODWLRQ�´�DQG�³UHVSRQVH�WR�QXWULHQW�OHYHOV´�

(adj.p.val < 0.005), indicating a possible important role regulating sulfate metabolism during 

sulfate deficiency. In contrast, organ-specific TFs exhibited enrichment in distinct biological 

processes. In roots, terms related to molecule transport are enriched for multiple TFs. Consistent 

with the role of its Arabidopsis homolog (Wang et al., 2020), the HHO TF appears to be involved 

in phosphate deficiency regulation (Figure 14a). In leaves, the WRKY and ZAT TFs appear to 

regulate targets enriched on functions related to glutathione metabolism and multiple terms 

associated with defense responses including salicylic, jasmonic and abscisic acid signaling 

(Figure 14b). The analysis of the top five candidate TFs and their target genes obtained from the 

context-specific GRNs revealed that they collectively regulate more than 20% of the DEGs in 

response to sulfate deficiency in both roots and leaves. The root-specific networks showed a high 

enrichment in phosphate starvation regulation, a process that has been linked to sulfate 

deficiency responses as previously reported (Canales et al., 2020; Fernández et al., 2024).  
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FIGURE N°14. Top five organ-specific TFs identified as key regulators of sulfate deficiency 
responses. (a) Dot plot showing GSEA results (FDR-adjusted p-value < 0.05) for individual root 
TF candidates. (b).Dot plot showing GSEA results for individual leaf TF candidates. (c) Treemap 
summarizing GSEA (FDR-adjusted p-value < 0.05) results for root candidate TF targets. (d) 
Treemap summarizing GSEA results for leaf candidate TF targets. 
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     A treemap visualization of the genes regulated by these candidate TFs indicates that, as 

expected, the most enriched biological processes are related to sulfate transport and metabolism. 

Furthermore, the analysis grouped overrepresented biological processes in categories like the 

cellular response to sulfur starvation, molecule transport, stress responses, amine metabolism, 

and processes associated with growth reduction, such as negative regulation of catalytic activity 

and senescence-related genes (Figure 14c-d) ²all of which are considered common biological 

processes influenced by sulfate deficiency (Henríquez-Valencia et al., 2018; Canales et al., 2020; 

Fernández et al., 2024). These findings provide insights into how sulfate deficiency impacts 

tomato plant growth and highlight the potential regulatory role of the selected TFs in the control 

of gene expression during this nutrient deficiency. 

 

     To limit our candidate TFs group and identify the most promising key regulator of the sulfate 

deficiency regulatory cascades for further experimental validation, we focused on the TF 

Solyc01g006650, called ETHYLENE-INSENSITIVE3-LIKE 3 (SlEIL3), that emerged as a 

strong candidate in both roots and leaves GRNs. Additionally, the GSEA analysis of SlEIL3 

targets indicate significant enrichment for sulfate-related GO terms in both roots and leaves, as 

well as processes such as amine metabolism, photoperiodism, cell transport, and stress responses 

(FDR adj.p.val< 0.05) (Figure 14a-b). The SlEIL3 is reported as a homolog of AtEIL3 (also 

called SLIM1, SULFUR LIMITATION 1), a well-studied TF that controls sulfate deficiency-

responsive genes in Arabidopsis (Maruyama-Nakashita et al., 2006; Watanabe and Hoefgen, 

2019, Preprint; Fernández et al., 2024). Notably, we found that SlEIL3 belongs to the same clade 

than SLIM1 (Fernández et al., 2024), a clade within the EIL/EIN3 family that includes other 

plant TFs suggested as controllers of the sulfate deficiency response such as the rice 
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Os09g0490200 and Os08g0508700 TFs (Maruyama-Nakashita et al., 2006). Furthermore, the 

SlEIL3 regulatory pairings from the roots and leaves GRNs, suggest that it regulates several 

well-known sulfate deficiency marker genes such as Sulfur Deficiency Induced (SDIs), Response 

to Low Sulfur (LSUs), APR3, Gamma-Glutamyl Cyclotransferase 2;1 (GGCT2;1) and Sulfate 

affinity transporters (SULTRs) (Hubberten et al., 2012, Preprint; Rakpenthai et al., 2022). In 

addition, previous network analysis performed by our team, suggested that SlEIL3 might be an 

important regulator of genes involved in sulfate deficiency responses (Canales et al., 2020; 

Fernández et al., 2024), however no experimental validation of its role was determined. 

 

   2.3   TARGET analysis supports the EIL3 role as a regulator of sulfate important 

genes. 

 

     We optimized a tomato protoplast isolation protocol and performed the TARGET 

perturbation analysis(Bargmann et al., 2013, Preprint) in tomato protoplasts to induce the EIL3 

expression in order to identify its direct genome-wide regulatory target genes, In detail, the EIL3 

TF was transiently overexpressed in tomato protoplasts after a plasmid DNA transfection, then 

treated to induce controlled nuclear import, the resulting effect of the EIL3 on genome-wide 

expression was assayed using a RNA-Seq in three replicates and compared to a control of a 

transfected empty vector under the same treatments. After analyzing the counts, TARGET 

detected 2367 upregulated genes, and 1694 downregulated genes associated to EIL3 direct 

regulation (adjusted p-value < 0.05) (Supplementary table 15). Notably, we observed a 

substantial overlap between the gene lists of DEGs under sulfate deficiency, the EIL3 targets on 

the organ-level GRNs, and the regulatory targets identified by TARGET in both roots and leaves 
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(Figure 15a). Moreover, we conducted an enrichment analysis that confirmed these overlaps as 

statistically significant (Figure 15b), indicating that EIL3 directly regulates a considerable 

portion of genes involved in sulfate deficiency responses. Furthermore, the significant overlap 

between TARGET-validated and GRN-predicted targets further demonstrate the accuracy of our 

regulatory networks. Notably, the EIL3 targets in root and leaf GRNs revealed that over 60% of 

key sulfur-related genes were validated by TARGET as direct targets for both tomato roots and 

leaves (Figure 15c). These findings demonstrate the complementary nature of GENIE3-predicted 

GRNs and TARGET for the identification of regulatory interactions and establish EIL3 as a key 

regulator of sulfate deficiency responses in tomato. Based on these findings, the SlEIL3 can be 

considered as the most promising candidate TF for transcriptional regulation of sulfate 

deficiency responses in S. lycopersicum and was chosen for functional validation tests covered 

in Aim 3. 
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FIGURE N°15. TARGET analysis supports SlEIL3 as a regulator of sulfate-responsive 
genes. (a) Venn diagrams showing overlap between sulfate deficiency DEGs (roots and leaves), 
SlEIL3 GRN targets, and TARGET-validated regulatory targets. (b) Enrichment analysis of 
these gene sets. Box heatmaps display log2 fold change, p-values, and intersection sizes. (c) 
Network visualization of SlEIL3-regulated sulfate-responsive genes (GO terms: sulfate 
metabolization route (green), sulfate metabolism (yellow), sulfate transport (pink). Blue edges 
indicate TARGET-validated genes. G3: GENIE3 GRN. 
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3. To experimentally validate the function of a central TF candidate in the regulation of 

plant growth under sulfate deficiency.  

 

Rationale: Sulfate deficiency negatively affects tomato plant growth and development, yet the 

molecular mechanisms involved in the regulation of this response are poorly understood. To 

investigate this, we generated a stable overexpression (OX) lines of Arabidopsis thaliana 

expressing a candidate SlTF discovered in Aim 2 as a key hub in the sulfate-responsive GRNs, 

with the purpose of validating its role as a key TF by assessing its regulatory impact on gene 

expression reprogramming and plant development effects in both control and sulfate-deficient 

conditions. 

 

   3.1   OX-SlEIL3 plants reveal increased growth and enhanced S accumulation. 

 

     To analyze the role of SlEIL3 in the regulation of plant growth and gene expression changes 

under sulfate deficiency, we generated SlEIL3 overexpressor lines in Arabidopsis thaliana. 

Plants were transformed by the floral dip method, and two independent lines were chosen for all 

analyses. The OX-SlEIL3 lines exhibit a significant accumulation of the EIL3 transcript, with 

highest expression observed in the OX-1 line, confirming overexpression of SlEIL3 (Figure 16a).  

    Visual inspection of OX-SlEIL3 lines revealed significant differences in seedling growth 

relative to control (wild type, WT) plants under both control and sulfur-deficient (-S) treatments. 

Analysis of growth parameters showed that the OX lines presented an increased growth of root 

and shoot organs, with longer primary and secondary roots, and increased foliar area (Figure 16b). 
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A multifactorial analysis of primary root length and total foliar area (Figures 16c-d) revealed that 

OX-SlEIL3 plants developed roots 1.3±1.8 times longer and a foliar area 1±3 times larger than 

WT plants, indicating that SlEIL3 overexpression considerably increased plant growth (p < 0.001, 

two-way ANOVA, and Tukey test). This phenotype is consistent with the reported growth effect 

of SLIM1 overexpression in Arabidopsis plants (Apodiakou et al., 2024). While S deficiency 

affected the growth of WT plants, it had a smaller effect on OX-SlEIL3 plants. Under sulfur-

deficient conditions, root length increased 1.5-2 times, and foliar area was 2.4-4.2 times larger 

than in WT plants (p < 0.05, two-way ANOVA, and Tukey test). Notably, there were no significant 

differences between OX-SlEIL3 lines 1 and 2, indicating that the two transgenic lines are 

functionally consistent.  

 

     Plants that were deprived of sulfate accumulated less S in their tissues, as expected. Total S 

measurements (Figure 16e) showed a significant treatment effect on S accumulation (p < 0.001), 

the OX-SlEIL3-1 plants accumulated considerably more sulfur than WT plants, with a median 

of 0.4 µg per gram of tissue. However, the OX-SlEIL3-2 did not show significant differences 

when compared to WT. This demonstrates that OX-SlEIL3-1 may have a more efficient S uptake 

mechanism and/or metabolism potentially related to the observed higher expression of SlEIL3 

(Figure 16a-e). These findings show that Arabidopsis OX-SlEIL3 lines exhibit improved growth 

and S accumulation than WT plants. The OX-SlEIL3-1 line's higher gene expression levels, 

together with its stronger phenotypic effects on plant growth and sulfur uptake, made it a suitable 

line for further transcriptomics analysis. 
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FIGURE N°16. Phenotypic analysis of Col-0 and OX-SlEIL3 Arabidopsis under 
contrasting sulfate treatments. (a) RT-qPCR analysis of SlEIL3 (Solyc01g006650) in control 
and OX plants, normalized to UBQ1 (AT3G52590). Mean ± SD from three biological 
UHSOLFDWHV��6WXGHQW¶V�W-test, p < 0.05). (b) Photographs of A. thaliana plants grown under full-
nutrient or sulfate-deficient conditions for two weeks. (c) Root length measurements. (d) Aerial 
organ area. (e) Sulfur content (µmol/µg). For (c±e), values represent mean ± SD from >15 
biological replicates. Error bars = 3. Statistical significance was assessed using two-way 
$129$�ZLWK�7XNH\�DQG�'XQQHWW¶V�SRVW�KRF�WHVWV��*p<0.05, ** p<0.01). 
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   3.2   Transcriptomic changes of the OX-SlEIL3 plants are equivalent to responses to 
sulfate deficiency treatment. 
 

     In order to understand the regulatory effect of the overexpression of SlEIL3 on the SODQW¶V 

transcriptome, we performed a mRNA-seq analysis comparing the effects of the different 

genotypes (WT and OX1) under sulfate deficiency conditions. Total mRNA was extracted and 

sequenced from two-week-old seedlings of both genotypes (WT and OX-SlEIL3) under control 

and sulfate-deficient conditions Following standard RNA-seq procedures, a count table was 

generated, and differential expression analysis was performed using the DESeq2 package. A 

multifactorial analysis identified 3,266 DEGs associated with genotype, 1,317 DEGs associated 

with treatment, and 468 DEGs resulting from the interaction between genotype and treatment 

(adjusted p-value < 0.05), with the majority of genes found shared between the genotype and 

interaction gene lists (Figure 17a) (Supplementary Table 16). To contrast the enrichment of the 

DEG lists obtained in this study to other sulfate deficiency transcriptomes, we conducted 

enrichment analyses using a one-tailed Fisher's exact test to compare our RNA-seq DEG lists to 

gene sets reported in previous studies, to the analysis of controls vs sulfate deficiency treated 

plants from (Maruyama-Nakashita et al., 2006; Dietzen et al., 2020) and to the analysis of WT 

and SLIM1-overexpressing plants (Apodiakou et al., 2024) (Figure 17b). Additionally, we 

included a list of S-related genes identified according to GO annotations (genes belonging to 

sulfur metabolism, transport, and sulfate signaling pathway). The analysis revealed a significant 

overlap between the DEGs identified in our genotype, treatment, and interaction G+T lists and 

those found in previous studies, confirming the consistency of our transcriptomic data to other 

Arabidopsis DEG profiles under similar conditions. Furthermore, the gene overlaps suggest the 

presence of a significant representation of S-related genes, emphasizing the potential of our 
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experiment to uncover regulatory networks related to the sulfate deficiency response. Given that 

our primary objective is to understand the impact of SlEIL3 on the transcriptome of OX plants, 

we selected the DEGs identified from the genotype factor and the genotype-treatment interaction 

factor for further analysis.  

     To analyze the expression patterns of OX-SlEIL3 DEGs and determine the regulatory effects 

of SlEIL3 overexpression, we generated a heatmap and used k-means clustering using the 

DEGs z-scored normalized expression values to identify four distinct clusters based on their 

expression profiles (Figure 17c). The cluster 1 contains 215 genes that show a reduced 

expression under sulfate deficiency, with this reduction being more pronounced in OX-SlEIL3 

plants. Cluster 2 includes 321 genes that are upregulated during sulfate deficiency, with 

consistently higher expression levels in OX-SlEIL3 plants. Cluster 3 includes 570 genes with 

relatively stable expression patterns across genotypes, and cluster 4 includes 1233 genes 

predominantly upregulated in OX-SlEIL3 plants under sulfate-sufficient conditions. 
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FIGURE N°17. Transcriptome analysis of Col-0 and OX-SlEIL3 Arabidopsis under sulfate 
deficiency treatments. (a). Venn diagram of genes significantly regulated by genotype, sulfate 
treatment, or their interaction (G + T). (b) Enrichment analysis comparing DEG enrichment 
across sulfate-related transcriptome datasets (Apodiakou et al., 2024; Dietzen et al., 2020; 
Maruyama-1DNDVKLWD�HW�DO���������XVLQJ�)LVKHU¶V�H[DFW�WHVW��RQH-tailed). (c) Heatmap of z-scored 
expression levels of DEGs in OX-SlEIL3 plants, clustered via K-means. (d) Dot plot of GSEA 
results (FDR-adjusted p-value < 0.05) for DEGs in OX-SlEIL3 Arabidopsis, grouped by K-
means clustering. 
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      A GSEA of these clusters revealed details regarding their functional roles (FDR adj.p.val< 

0.05) (Figure 17d). Cluster 2 showed an enrichment for defense responses and highlighted the 

presence of sulfur starvation responses and sulfate transport, indicating that SlEIL3 may have a 

role in upregulating sulfate-responsive genes, like its homolog SLIM1. Cluster 1 was enriched 

for stress responses and defense mechanisms, indicating the activation of stress pathways 

associated with sulfate deficiency and growth inhibition. Cluster 3 contained genes involved in 

cell transport, cell wall metabolism, auxin signaling, and cell size regulation, which could 

explain the observed altered-growth phenotype of OX-SlEIL3 plants. Cluster 4 consisted of 

genes involved in the metabolism of S-containing compounds such as glucosinolates, as well as 

few genes related to sulfate assimilation (Figure 17d). The gene lists and their associated 

biological process indicate that SlEIL3 can regulate a variety of S-related and stress-responsive 

pathways in Arabidopsis. 
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   3.3   The SlEIL3 controls sulfate deficiency marker genes and recapitulates tomato 

predicted regulatory cascades. 

 

As mentioned above SlEIL3 is a homolog of AtEIL3 also known as Sulfur Limitation 1 

(SLIM1) a master regulator of sulfate deficiency responses in Arabidopsis, previously validated 

as a key regulator of multiple gene markers associated to sulfate deficiency transcriptomic 

responses (Maruyama-Nakashita et al.��������:DZU]\ĔVND�DQG�6LUNR��������5DNSHQWKDL�et al., 

2022). To investigate whether SlEIL3 regulates genes predicted to be controlled by SLIM1, we 

generated a regulatory network that illustrates the connections of SlEIL3 to the DEGs in OX-

SlEIL3 plants. Furthermore, we incorporated the results of a FIMO analysis to identify potential 

SlEIL3 binding sites in the promoters of Arabidopsis genes, utilizing the SlEIL3 PWM derived 

from the analysis of tomato GRNs (Figure 18a). From the 3,391 genes in the DEG list, 52% 

(1,763 genes) were identified as predicted binding targets of SlEIL3 based on their promoter 

sequences, suggesting they could be direct targets of SlEIL3 (Supplementary Table 17). The 

remaining 48% are likely indirect targets, regulated downstream of SlEIL3.  Focusing on S-

related genes (as defined by GO annotations), we identified important sulfate deficiency markers 

within the network that overlap with our predicted tomato SlEIL3 GRNs for roots and leaves 

(Figure 18b). The network included a variety of indirect and direct targets of SlEIL3, including 

four Response to Low Sulfur (LSU) genes, a Sulfur Deficiency Induced (SDI), three members of 

the sulfur signaling cascade (APRS2, ATPS1, and APSk3), and five genes encoding SULTRs and 

the Gamma-Glutamyl Cyclotransferase (GGCT), all of which were also found to have predicted 

direct binding by the FIMO analysis. These results demonstrate that SlEIL3 and SLIM1 share 

highly conserved regulatory pathways, with SlEIL3 effectively regulating important S-related 
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genes in tomato and Arabidopsis. Furthermore, our results validate the accuracy of our tomato 

GRNs in the prediction of sulfate deficiency regulatory cascades, highlighting the conserved 

nature of SlEIL3 and SLIM1 regulatory mechanisms. 

To observe the specific regulatory effect of the DEG list of OX-SlEIL3 on biological 

processes in Arabidopsis, we performed a GSEA as a treemap visualization. This analysis 

showed that SlEIL3 overexpression in Arabidopsis regulates a diverse set of biological 

processes, involving S-specific pathways as well as broader physiological functions (FDR 

adj.p.val< 0.05) (Figure 18c). As expected, sulfate-related processes, including sulfate transport 

and S compound metabolism are enriched, confirming the role of SlEIL3 in maintaining S 

homeostasis and its functional parallel to SLIM1 as a master regulator of sulfate deficiency 

responses (Maruyama-Nakashita, 2004, 2017, Preprint; Dietzen et al., 2020). However, the 

results also highlight the regulation of additional processes, such as chemical homeostasis, 

transport mechanisms, and metabolic adjustments, reflecting the plant's broader adaptive 

responses to sulfate deficiency. 

The results reported in this section support our research hypothesis, demonstrating that 

sulfate deficiency triggers a transcriptome reprogramming that is partially controlled by TFs like 

SlEIL3. This TF regulates a broad set of genes involved in sulfate deficiency responses 

influencing processes beyond S metabolism. We show that multiple other biological processes 

such a defense response, cell wall development and other stress responses were also regulated 

by this TF, results that could partially explain the growth repression phenotype observed in 

sulfate-starved plants and underscore the potential of this TF and support the complexity of the 

plant regulatory mechanisms under nutrient stress.  
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FIGURE N°18. Regulatory effects of SlEIL3 on Arabidopsis sulfate-responsive genes. (a) 
Network visualization of SlEIL3 regulation in Arabidopsis transcriptome. Colored edges 
represent predicted TF-binding, grey edges indicate indirect regulation. (b) Subnetwork of key 
sulfate-related genes (GO terms: sulfur metabolism, sulfur transport, sulfur utilization 
pathways). Genes within the blue rectangle were identified in tomato-predicted SlEIL3 GRNs. 
(c) Treemap summarizing GSEA results (FDR-adjusted p-value < 0.05) for SlEIL3 regulatory 
effects in the transcriptome. p.direct regulation: predicted direct regulation. 
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Regulatory model of TFs regulation of sulfate deficiency response in tomato 

 

      To illustrate the potential regulatory cascade underlying sulfate deficiency in 

tomato/Arabidopsis, we generated a regulation model based on our findings. This model 

demonstrates how the seven TF candidates identified in the organ-level GRNs may contribute to 

the sulfur deficiency transcriptomic regulation and how the target genes are linked to biological 

processes based on a GSEA (Figure 19a). By examining the complete set of targets for each TF, 

we determined what proportion of their total target genes are part of the DEG lists in response 

to sulfate deficiency. In roots, the TFs HHO and KUA1 have 35% and 24% of their total targets, 

respectively, belonging to the sulfate deficiency DEG list. The targets found for HHO in roots 

revealed that its potentially a regulatory control point between sulfate and phosphate regulation, 

since the most enriched biological process is cellular response to phosphate starvation, it includes 

more than 20 genes directly involved with phosphate transport and metabolism GO, with 57.2% 

(184/326) identified in a phosphate deficiency transcriptome analysis (Satheesh et al., 2022) 

(Supplementary Table 18). Additionally, the HHO is connected to 23 genes involved in anion 

transport, including genes involved in sulfate, phosphate, molybdate and multiple carbohydrate 

transporters. The KUA1 TF demonstrated to be enriched to diverse biological processes, is 

particularly notable for its role in drought responses, as it targets 29 genes directly related to 

water deprivation, with 29.8% (193/656 of its targets identified in a drought transcriptome  

(Wang et al., 2023b) (Supplementary Table 19). 
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     In leaves, we found the candidates WRKY71 and ZAT11 to have 71% and 79% of their total 

targets, respectively, part of the sulfate deficiency DEGs. The most enriched biological processes 

among their target lists are glutathione metabolism and defense responses.  For WRKY71 we 

found 69 genes involved in defense response, including 29 specifically associated with "response 

to fungus," with 18.49% (339/1834) of its targets were identified in a fungal infection 

transcriptome analysis (Courbier et al., 2021) (Supplementary Table 20). Similarly, the ZAT11 

is implicated in glutathione metabolism and defense responses, with 24 genes linked to "response 

to fungus" and 21.9% (403/1834) of its targets overlapping with the same fungal infection dataset 

(Courbier et al., 2021) (Supplementary Table 21).  Notably, both TFs share nearly 50% (289 

genes) of their targets, suggesting a strong correlation between sulfate deficiency and defense 

responses in leaves through changes in glutathione metabolism. 

 

     Among TFs shared between roots and leaves, the TAGL-l was found to have 39% and 60% 

of its total targets as DEGs in roots and leaves, respectively; SCL14, 50% and 88%; and EIL3, 

68% and 84% of the DEGs in roots and leaves, respectively. The most enriched biological 

processes for all three TFs are associated with sulfate metabolism, highlighting their potential 

crucial role in regulating sulfate-related pathways and metabolism. The TAGL-l is linked to 

sulfate metabolism, and associated to molecule transport regulation in roots, targeting 41 ion 

transport-related genes, including aluminum, potassium, nitrate, sulfate, zinc, and phosphate 

transporters identified in the root GRN (Supplementary Table 22). The SCL14 is also strongly 

enriched in sulfate metabolism and associated to 25 genes encoding amino acid metabolism 

enzymes in the leaf GRN, suggesting a previously unrecognized regulatory role in amino acid 

metabolism in tomato (Supplementary Table 23). As mentioned above, the EIL3 exhibits the 
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highest percentage of total targets involved in sulfate deficiency response, and demonstrate the 

highest enrichment en sulfate-related metabolism (Supplementary Table 24), confirming its high 

involvement in tomato plants responses to sulfate deficiency.  

 

     In the model we also included a representation of OX-SlEIL3 Arabidopsis plants observed 

phenotype (increased root growth and aerial organs area) and included potential genes involved 

in physiological responses that could explain the phenotype observed (Figure 19b). The DEGs 

with evidences for potentially contributing to this phenotype were categorized into three 

functional groups: TFs associated with accelerated growth and senescence responses (MYB1, 

MYB60, NAC016, NAC046, WRKY75, PIF3), genes involved in sulfate uptake (ATPS1, APR1-

3, SULTR1;1, SULTR1;2, SULTR2;1, SULTR4;2), and sulfate deficiency markers (LSUs, SDIs, 

GGCC). These genes represent key components of the regulatory cascades potentially activated 

downstream of SlEIL3 in tomato, providing insights into its role in sulfate deficiency response. 
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FIGURE N°19. Model of key TFs regulating sulfate deficiency responses in Solanum 
lycopersicum. (a) Candidate key TFs regulating sulfate deficiency in tomato. TFs are represented 
as triangles: brown (root-specific), green (leaf-specific), and blue (shared between both organs). 
Yellow bars indicate the percentage of DEGs among TF targets under sulfate deficiency. Colored 
rectangles denote top enriched GO biological processes (GSEA, FDR-adjusted p-value < 0.05), 
with lines linking TFs to associated processes. (b) Phenotypic summary of OX-SlEIL3 
Arabidopsis plants. Genes linked to accelerated growth, increased sulfate uptake, and activation 
of sulfate deficiency markers are listed. 
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VII.   DISCUSSION 

1. To generate organ-specific reference Gene Regulatory Networks models for Solanum 

lycopersicum. 

 

     To generate tomato GRNs, our first step was to generate an updated resource of gene models, 

TFs and functional annotations, because it was necessary to compile and organize the gene 

annotations that were so diverse between different experiments, only then we can be capable of 

comprehensive detecting the regulatory cascades in tomato, and further using the networks to 

reveal key regulatory points for multiple biological processes.  at the organ level. We compiled 

the gene annotations from the latest genome Sl4.0 into ITAG4.1c. Using widely adopted 

annotation pipelines (Jones et al., 2014; Cantalapiedra et al., 2021), we ere able to assign 

functional annotations to 25,689 of the 37,468 genes of ITAG4.1c, considerably improving the 

gene coverage compared to iTAG4.1 in SolGenomics (13,142 genes with functional annotations) 

[(https://solgenomics.net/ftp/tomato_genome/annotation/ITAG4.1_release/ITAG4.1_goterms.t

xt )] or previous annotations for iTAG4.0 (25,285 genes) (Hosmani et al., 2019; Rivera-Silva et 

al., 2024).  

     TF prediction remains a challenging task, as automated approaches usually rely on protein 

sequence scaning for known DNA-binding domains, which may lead to the inclusion of proteins 

with DNA-binding capabilities unrelated to TF function (Itzkovitz et al., 2006; Liebold et al., 

2024). To avoid such proteins and refine the tomato TF list, we integrated multiple levels of 

evidence to filter and extract a curated set of 1,840 TFs (representing around 5% of tomato 

genes). This number closely aligns with TF counts reported for tomato in PlantTFDB (1,845 

TFs) (Jin et al., 2017) and is slightly higher than those in CisBP (1,773 TFs) (Weirauch et al., 
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2014) and other annotated TFs from previous studies (1,069 TFs in Kumar et al., 2021). Overall, 

the percentage of TF coding genes we found is slightly lower than TFs reported for Arabidopsis 

(approximately 5-10%) (Riechmann and Ratcliffe, 2000) but consistent with estimates reported 

for other crops, including wheat (5.7%) and rice (6.1%) (Zheng et al., 2016). It is also 

comparable to values reported for other Solanaceae species, such as eggplant (5.3%) (Wei et al., 

2020). Our efforts provide a comprehensive framework to start the development of genomic 

tools for studying tomato regulatory cascades. 

     A vast number of transcriptomic studies have been conducted in tomato, covering diverse 

experimental conditions, organs, and developmental stages. While several efforts have aimed to 

generate gene expression atlases for tomato gene expression (Ozaki et al., 2010; Fukushima et 

al., 2012; Gao et al., 2013; Koenig et al., 2013; Arhondakis et al., 2016; Zouine et al., 2017; Bae 

et al., 2021; Bizouerne et al., 2021; Kumar et al., 2021; Kusano et al., 2022; Li et al., 2024) 

many studies are limited in scope, often focusing on specific experimental conditions, using 

outdated genome assemblies (SL2.4 or SL3.0 with iTAG2.5 or iTAG3.0 annotations), or relying 

on microarray data. To our knowledge, the gene expression dataset collected in this study 

represents the most comprehensive to date, compiling over 10,000 RNA-Seq libraries from five 

major organs and integrating hundreds of Bioprojects performed worldwide. Moreover, the 

transcriptomes were processed utilizing the latest genome version (SL4.0) and the updated 

ITAG4.1c annotation, resulting in greater gene coverage. This extensive dataset enabled us to 

characterize general gene expression patterns at the organ level, facilitating the identification of 

genes involved in organ-specific functions. Notably, organ identity has been shown to be the 

strongest determinant of differential gene expression, surpassing other experimental variables 

and highlighting the role of developmental processes in shaping transcriptome profiles (Aceituno 
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et al., 2008). Thus, consistent with previous studies (Li et al., 2024), we found that most tomato 

genes meet the threshold for expression across all organs. Similar ubiquitous expression patterns 

have been reported in other plants, including Linum usitatissimum (Qi et al., 2023)  and Zea 

mays (Huang et al., 2018), where over 50% of genes are expressed across multiple tissues.  

     Beyond broadly expressed genes, we identified a substantial subset of genes with organ-

specific expression that were enriched in biological processes critical for organ function. Our 

analyses successfully captured known organ-specific genes (Siloto et al., 2006; Martín-Trillo et 

al., 2011; Ezura et al., 2017; Bizouerne et al., 2021; Bres et al., 2022; Hawar et al., 2022; Aviña-

Padilla et al., 2023). Moreover, genes such as SULTR1;1 and FER in roots, TPD1-l genes in 

flowers, LNG1 and SlBRC1a in leaves, stems, and hypocotyls, and ABI TF in seeds were also 

identified in a study focused on characterizing organ specific expression (Li et al., 2024). The 

identification of these well-documented markers supports the robustness of our expression 

threshold standards. Furthermore, the TFs also displayed widespread expression across tomato 

organs, mirroring findings in Arabidopsis (Ranjan et al., 2024). Prior studies in tomato indicate 

that fewer than 20% of expressed TFs are organ-specific (Rohrmann et al., 2012). Nonetheless, 

despite their broad expression, variations in TF expression levels across organs highlight the 

dynamic and context-dependent regulation of transcriptional networks governing organ function. 

     Transcriptomic data has been extensively used to generate biological network models with 

the purpose of identifying key candidates for functional genomics analyses. Due to the limited 

availability of TF-target interaction data existing for tomato, the majority of studies have relied 

on GCNs to infer regulatory relationships and identify co-regulated gene groups (Fukushima et 

al., 2012; Koenig et al., 2013; Ichihashi et al., 2014; Arhondakis et al., 2016; Yue et al., 2016; 

Kim et al., 2017; Zouine et al., 2017; Bizouerne et al., 2021; Kusano et al., 2022; Manosalva 
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and Vandepoele, 2023; Pirona et al., 2023; Wang et al., 2023a). Notably, the GCNs lack 

directionality, making it difficult to establish regulatory interactions. Additionally, many rely on 

correlations such as Pearson coefficients, which fail to capture non-linear relationships 

(Escorcia-Rodríguez et al., 2023). To address these limitations, we employed GENIE3, a widely 

used algorithm for reconstructing directed GRNs in plants (Chen et al., 2023; De Clercq et al., 

2021; Harrington et al., 2020; Huang et al., 2018; Ranjan et al., 2024; Tu et al., 2020) and other 

organisms (Huynh-Thu et al., 2010; Huynh-Thu and Geurts, 2019; Cuesta-Astroz et al., 2021; 

Olivares-Yañez et al., 2021). GENIE3 requires only gene expression data as input, making it 

particularly suitable for tomato, where TF gene targets remain poorly characterized. 

     To validate our GRNs, we benchmarked them against available ChIP-Seq data 

standard networks, employing the AUPR and AUROC curves. This strategy, previously used to 

assess GRN performance in plants (Brooks et al., 2019; Contreras-López et al., 2022), provides 

a more centered evaluation of TF-target interactions than alternative methods that utilize gene 

co-association to biological processes or metabolic pathways (Kim et al., 2017; Orduña et al., 

2023). Our analysis determined that a 2% GENIE3 scores threshold²comprising 660,000±

800,000 edges²was ideal, aligning with previous GENIE3-based GRN studies in crops, which 

typically consider networks containing  around 1 million edges (Harrington et al., 2020; Huang 

et al., 2018; Ramírez-González et al., 2018). Notably, the GENIE3-derived GRNs outperformed 

other tomato networks from public resources such as PlantRegMap (Tian et al., 2020) and other 

genome-scale biological network models (Kim et al., 2017). Additionally, more than 50% of 

GENIE3-predicted edges were supported by one or more independent evidence, including cis-

regulatory motif binding predictions, further reinforcing the biological relevance of these 

regulatory connections, as was proven in other networks (De Clercq et al., 2021; Chen et al., 
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2023). This integration of multiple validation strategies enhances the accuracy and functional 

significance of inferred GRNs, providing a robust framework for studying transcriptional 

regulation in tomato. Our analysis revealed that while most genes are broadly expressed across 

organs, the vast majority of TF-target interactions remain organ-specific. This pattern has been 

observed in GRNs from other crops (Huang et al., 2018; Ranjan et al., 2024), suggesting that 

gene expression levels play a relevant role in establishing regulatory interactions underlying 

organ-specific functions. Notably, we identified a positive correlation between TF connectivity 

and target conservation across organs. Highly connected TFs (hubs) tend to regulate a similar 

set of targets in all organs, whereas TFs with fewer connections are more likely to control organ-

specific processes. An evolutionary constraint may underlie this phenomenon, as TF-target 

interactions involving hub genes are more conserved. Disruptions in these interactions are more 

likely to be deleterious, leading to reduced genetic diversity and slower evolutionary rates among 

hub TFs. In contrast, tissue-specific TFs, which are less connected, have been described to evolve 

faster (Mack et al., 2019). 

      Understanding how TFs initiate gene expression changes in response to various cues and 

stimuli is crucial for developing new strategies to mitigate stress responses and overcome climate 

change. By utilizing tomato organ-specific reference GRNs, we can identify biologically 

relevant interactions and potential regulatory candidates that control gene responses to stimuli. 

We utilized the fruit-specific GRNs to identify important TF regulators of fruit ripening, 

including RIN and TAGL1 (Karlova et al., 2014). These TFs were tested against validated target 

lists, which included genes confirmed by binding studies (Fujisawa et al., 2013; Zhong et al., 

2013; Gao et al., 2019) and regulatory studies of RIN-deficient plants (Gao et al., 2019; Ito et 

al., 2020; Li et al., 2018; Zhao et al., 2018). Our analysis showed significant enrichment between 
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our GRNs and the experimentally validated targets, supporting the networks' ability to capture 

in vivo regulatory events. Notably, our networks identified RIN targets such as FUL1, which 

were validated using yeast one-hybrid assays (Fujisawa et al., 2014), as well as essential ripening 

genes such as ACS2, ACS4, E8, EXP1, PSY, NOR, PSY and CNR, which were validated using 

ChIP-PCR (Martel et al., 2011). Similarly, qPCR validation supported TAGL1 targets, including 

TF FUL2 (Fujisawa et al., 2014), as well as genes such as ACS2, ETR1, ERF2 and PL (Itkin et 

al., 2009). These findings demonstrate our GRNs strong prediction capacity for identifying 

important regulatory relationships. 

     Interestingly, RIN and TAGL1 regulatory target genes are extensively connected due to their 

effect on fruit ripening, but a direct regulation link between both TFs does not exists in the fruit 

GRN. Our findings indicate that these transcription factors may influence the ripening process 

via indirect regulation possibly by epistatic synergistic control of ripening-responsive genes as 

suggested in previous studies (Fujisawa et al., 2014; Jeon et al., 2024). In our fruit ripening GRN, 

we identified ARF2A and ERF2.E2 as central hubs, which may serve as key regulatory nodes 

influencing fruit ripening cascades. ARF2A had previously been proposed as a potential control 

point in the hormonal regulation of ripening (Breitel et al., 2016), The direct gene targets 

identified in our network are consistent with an analysis of OX-ARF2A plants where the ETR, 

ACS4, AP2A, ETR3, ETR4, NOR, and RIN genes were found as DEGs (Breitel et al., 2016). We 

recommend testing the binding targets of both ERF2.E2 and ARF2A TFs, by TF-binding 

analysis such as ChIP-seq to validate the potential key hub effect we found for ripening 

responsive genes. 

     On the other hand, as additional evidence, we evaluated the cellular response to ABA since 

it was one of the ubiquitously enriched biological processes found in our organ specific gene 
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lists. We detected an important correlation between the SlABF3 and SlABF5 TFs with drought 

responsive genes in addition to classical important genes for ABA signaling such as PYL/RCAR 

transporters, PP2Cs phosphatases and protein kinases SnRK2s (Fujii et al., 2009). SlABF3 was 

found to be able to regulate SlABF5 and two PP2C phosphatases. The direct regulation between 

these genes was previously found in a Yeast two-hybrid experiment (Chen et al., 2016). A strong 

relationship of SlABF5 with drought was observed in the enrichment analysis between the 

drought responsive transcriptome and the leaf GRN targets and its own expression changes 

during drought, as reported earlier (Orellana et al., 2010; Wang et al., 2023). The analysis of 

ABF3/ABF5 further confirmed their regulatory potential over drought-responsive and ABA-

related genes identified in the leaf GRN. These findings highlight the integral role of SlABF5 in 

coordinating ABA signaling and drought responses, reinforcing the potential of the GRNs to 

recapitulate the effect of key TFs on tomato stress responsive regulatory cascades.  

      Through network analysis, we were able to identify SlGBF3 TF as a new key hub in the ABA 

signaling responsive genes network. This TFs was found as a part of a coexpression module of 

drought responsive genes in tomato (Bortolami et al., 2024), and we found that it is an homolog 

to AtGBF3, reported in Arabidopsis as key regulator of drought sensitivity/tolerance and to genes 

involved in ABA signaling cascade (Ramegowda et al., 2017). Moreover, in kiwifruit, an 

homolog of GBF3 was found to be important in vitamin C metabolism, a regulatory cascade also 

modulated by ABA (Liu et al., 2022). The GRNs of SlGBF3 revealed a potential to regulate 

multiple PP2C genes, and three ABFs TFs consistently and ubiquitously on tomato, thus 

revealing a strong potential to control ABA regulatory cascades (Fujii et al., 2009; Korwin 

Krukowski et al., 2023; Park et al., 2009). We hypothesize that SlGBF3 functions as a key 

regulator of ABA-related genes and may be closely linked to drought-responsive pathways in 
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leaves and potentially other tomato organs. This suggests a broader role for SlGBF3 in 

integrating ABA signaling with environmental stress responses. Further analysis, including 

functional validation is required to confirm its regulatory function and elucidate its contribution 

to drought adaptation mechanisms.  

     The Solanum lycopersicum organ-specific GRNs, which are accessible via the TomViz 

platform in the tomato GRNs app in PlantaeViz platform(Santiago et al., 2024), provide 

comprehensive insights into TF-target relationships and organ-specific regulatory pathways in 

tomato. This resource outperforms other web-based tools by excelling in gene coverage, dataset 

integration, and specificity of regulatory cascades. In contrast, existing tools primarily rely on 

GCNs and are limited to a narrow set of genes, often focusing predominantly on fruit tissue.  The 

organ-specific reference GRNs web app in TomViz can be considered a relevant tool for tomato 

research community, since it integrates accessibility and depth analysis, offering a platform that 

expands the understanding of tomato gene regulation across various developmental stages, 

conditions, and varieties, thereby paving the way for novel discoveries in tomato biology. 

      In this section, our integrated omic analysis produced a valuable resource for the 

investigation of tomato regulatory cascades. We examined known regulatory cascades of 

relevant biological processes to demonstrate the potential of organ-specific GRNs to predict TF-

target interactions validated in vivo, since prior networks, were limited by deficient gene 

coverage and a lack of enrichment for regulatory relationships, as shown in this study. By using 

the organ-specific GRNs as a baseline for tomato regulatory cascades, we can now concentrate 

on understanding the regulatory mechanisms that govern sulfate deficiency responses in tomato. 
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2. To identify candidate TFs that are central regulators of the sulfate deficiency response 

in S. lycopersicum.  

     Most of the existing knowledge on sulfate deficiency gene expression response in plants has 

been derived from studies in Arabidopsis thaliana, with relatively few investigations focusing 

on crop species (Watanabe and Hoefgen, 2019, Preprint; Fernández et al., 2024). In tomato, the 

gene expression changes under sulfate deficiency were explored by Canales et al. (Canales et 

al., 2020) who identified a group of TFs that could be potential key regulators, based on 

regulatory evidence from Arabidopsis pathways. Using the reanalyzed transcriptomes, we 

generated context-specific GRNs for sulfate deficiency in tomato roots and leaves. The GRNs 

for roots are smaller due to a reduced number of DEGs lists; in contrast, the GRNs for leaves 

encompass a broader set of nodes, indicating a more complex regulatory cascade triggered by 

sulfate deficiency, as demonstrated by Canales et al. (2020). Our findings suggest that the 3±4-

week transcriptome gap has no effect on the main regulatory pathways or the primary TFs 

influencing each organ's response to sulfate deficiency.  This result demonstrates that, despite 

most genes are not shared between different time points, the key TFs controlling the regulatory 

cascades upstream remain conserved. 

     We used our context-specific sulfate deficiency GRNs for tomato roots and leaves to identify 

a new group of key regulatory TFs that could be controlling the sulfate deficiency transcriptome. 

The analysis was based on network properties, influentiality analysis, quantified expression, and 

the direct regulation of putative targets analysis in conjunction with approximations to detect 

masters regulatory TFs in other nutrient deficiency studies (Alvarez et al., 2014). The final 

candidate selection prioritized TFs with homologs with verified roles in sulfur metabolism, 

transport, amino acid catabolism, and/or growth regulation pathways. Notably, the functions of 
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many tomato TFs remain uncharacterized. To address this, we conducted enrichment analysis of 

biological processes associated with their target genes and include information about their 

homologs in Arabidopsis to provide further insights into their potential functions. 

     In the leaves GRN, we identified the TF SlZAT11 (Solyc05g054650), an ortholog of 

AtZAT11 and AtZAT18 (AT3G53600 and AT2G37430). AtZAT18 has been implicated in 

drought stress and ROS metabolism (Yin et al., 2017), and it is also reported as a positive 

regulator of defense responses and a negative regulator of auxin and cytokinin signaling, thereby 

influencing plant growth (Li et al., 2022). Similarly, AtZAT11 is associated with growth 

regulation and nickel responses (Liu et al., 2014) and is activated during salt stress and pathogen 

infections (Mittler et al., 2006). These findings suggest that SlZAT11 may influence immune 

responses and growth repression under sulfate deficiency. The TF SlWRKY71 

(Solyc02g071130), was found linked to auxin-dependent axillary bud development and lateral 

branch growth (Yang et al., 2024) and shares significant similarity with AtWRKY71 (Kumar et 

al., 2023), which is involved in reproductive development and early senescence in Arabidopsis 

(Yu et al., 2016, 2021). Possibly, the SlWRKY71 may partially explain the early senescence 

expected in tomato plants under sulfate deficiency. We may consider that the two leaf candidate 

TFs may have a strong  

      In the root GRN, we identified SlHHO (Solyc05g009720), found to be involved in the 

regulatory cascades of phosphate and nitrate starvation responses (Marro et al., 2022). Its 

homolog, AtNIGT1.2 (AT1G68670), modulates phosphate and nitrate uptake and regulates 

nitrate-responsive genes (Wang et al., 2020). These findings indicate that SlHHO may serve as 

a connection between sulfate deficiency and phosphate deficiency response pathways. The 

transcription factor SlKUA1 (Solyc08g078340), was classified as a master transcriptional 
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regulator during virus infection (Aviña-Padilla et al., 2022), and is an homolog of AtKUA1 

indicated as a regulator of cell development in leaves, a repressor of peroxidase transcription, 

thus involved in ROS balance, and an activator of other stress-responsive TFs (Kwon et al., 

2013; Liu et al., 2018). Furthermore, this TF was suggested as a possible regulator of sulfate 

deficiency response in tomato (Canales et al., 2020), pointing out to have a significant role in the 

regulation of this response. 

     The TFs shared between root and leaf GRNs emerge as potential plant-wide master regulators 

of the sulfate deficiency response in tomato. These TFs were chosen as the top-scoring regulators 

in both networks, highlighting their key significance in regulatory cascades associated with 

sulfate deficiency. The SlTGA-l (Solyc04g072460), an ortholog of multiple AtTGA TFs, has 

been reported to be upregulated in tomato plants during drought, salt, and heat stress (Li et al., 

2015). The TGA family is well known for its role in nutrient starvation regulatory cascades and 

in systemic acquired resistance pathways (Alvarez et al., 2014; Sun et al., 2018; Yildiz et al., 

2023). The SlSCL14 (Solyc10g086530) is a homolog of AtSCL14, a member of the 

GRAS/SCARECROW TF family in Arabidopsis (AT1G07530 and AT3G46600). GRAS TFs 

are involved in key cellular pathways, including gibberellin signaling, shoot meristem 

maintenance, and growth responses (Stuurman et al., 2002; Tian et al., 2004). The AtSCL14 is 

involved in xenobiotic detoxification regulatory cascades and is known to interact with TGA 

TFs (Fode et al.��������'¶DOHVVDQGUR�et al., 2018). Due to their interaction in Arabidopsis, the 

roles of SlSCL14 and SlTGA-l TFs may be correlated, and both may be able to affect stress 

response pathways that intersect with sulfate deficiency responses, potentially contributing to 

the activation of stress pathways observed under sulfur-limited conditions. 
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     The Solyc01g006650, or ETHYLENE LIMITATION LIKE 3 (SlEIL3), is a TF homolog to 

AtEIL3, also called SLIM1 (SULFUR LIMITATION 1). This TF is known to function as an 

activator of sulfate deficiency responsive genes (Maruyama-Nakashita et al., 2006). The AtEIL3 

function was discovered in mutant A. thaliana plants that showed a 60% reduction of high-

affinity sulfate uptake transporters (SULTR1;1, SULTR1;2, and SULTR4;2) under low sulfate 

conditions; moreover, this TF can regulate more than 70 genes during sulfate deficiency 

(Maruyama-Nakashita et al., 2006; Kawashima et al., 2011). The SlEIL3 has been proposed as 

a master regulator of sulfate deficiency by Canales et al.(Canales et al., 2020) and is further 

supported by our systems biology analysis of shared regulatory cascades in sulfate-deficient 

plants (Fernández et al., 2024). 

     The TARGET protocol enables rapid identification of TF targets by transiently expressing 

TFs in protoplasts and analyzing gene expression changes (Bargmann et al., 2013, Preprint). 

Originally developed for Arabidopsis thaliana, where it has been proven as a valuable tool for 

generating GRNs  (Brooks et al., 2019; Alvarez et al., 2020; Li et al., 2020; Safi et al., 2021). 

Nonetheless. the TARGET protocol has only been applied to Oryza sativa and Catharanthus 

roseus (Guedes et al., 2022; Shanks et al., 2022). In this study, we adapted TARGET protocol 

for the first time to study tomato regulatory cascades and identify the direct regulatory targets of 

SlEIL3. Our findings revealed a strong overlap between genes responsive to sulfate deficiency, 

the GRN-predicted targets, and TARGET-validated interactions, confirming SlEIL3 as a central 

regulator of sulfate deficiency responses. These results demonstrate the feasibility of TARGET 

in tomato and highlights its potential for guiding crop improvement strategies under nutrient 

stress.  
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 We found that SlEIL3 ranked highest in root and leaf GRN analyses and showed functional 

similarities with its Arabidopsis homolog, AtSLIM1. Ontology analysis further linked its targets 

to sulfur deficiency markers, reinforcing its regulatory role. The integration of GRN predictions 

with TARGET validation provided robust evidence that SlEIL3 directly regulates key genes 

involved in sulfate deficiency responses. Based on this comprehensive support, SlEIL3 was 

selected as the most promising master regulator of sulfate deficiency in tomato and prioritized 

for functional validation. 

 

3. To experimentally validate the function of a central TF candidate in the regulation of 

plant growth under sulfate deficiency. 

 

     Sulfate deficiency in plants has been shown to cause delayed development, chlorosis, and 

reduced yields (Hawkesford, 2000; Maruyama-Nakashita, 2017, Preprint; Nakai and Maruyama-

Nakashita, 2020, Preprint).  We analyzed the phenotype of Arabidopsis seedlings overexpressing 

SlEIL3; Notably, the OX-SlEIL3 plants outgrew wild-type (WT) plants under both control and 

sulfate-deficient conditions during the observation period (two weeks after sowing). As 

discussed earlier, the SlEIL3 is homologous to Arabidopsis SLIM1 TF, previous studies have 

shown that slim1 mutants exhibit significantly reduced root growth, whereas overexpression of 

SLIM1 rescues this phenotype in Arabidopsis and rice plants (Maruyama-Nakashita et al., 2006). 

Possibly the OX-SlEIL3 plants develop the inverse phenotype of slim1 mutants, accelerating 

plant growth. Similarly, the SLIM1 overexpression lines reported by Apodiakou et al. 

(Apodiakou et al., 2024) demonstrated accelerated growth accounted for larger foliar area, also 

revealed premature senescence, as indicated by chlorotic leaf tips and altered chlorophyll and 
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anthocyanin levels. Many of these symptoms were not observed in our OX plants, probably since 

our observations were made only during two weeks after sowing; Nevertheless, we consider that 

overexpressed SlEIL3 triggers a similar accelerated growth effect that was also present in OX-

SLIM1 plants. We hypothesize that overexpressed SlEIL3 prevents growth retardation 

phenotypes in these plants by suppressing the sense of sulfate deficiency, at least in the early 

stages. 

      The OX-SlEIL3 lines also exhibited enhanced sulfate uptake compared to WT plants, as 

indicated by higher sulfur content under normal sulfate conditions. WT plants typically induce 

SULTRs transporters expression during sulfate deficiency (Maruyama-Nakashita et al., 2004); 

conversely, the slim1 mutants exhibit impaired transporter induction, leading to a 30% reduction 

in sulfur content (Maruyama-Nakashita et al., 2006; Kawashima et al., 2011). Contrary to the 

expected, Apodiakou et al.  (Apodiakou et al., 2024) found that SLIM1 overexpression under 

sulfate-sufficient media did not significantly affect total sulfur content; an explanation of this 

effect probably because the control of SULTR transporters and other molecules activated during 

sulfate deficiency is influenced by additional TFs such as AtEIL1, which also responds to sulfate 

deficiency and acts concomitantly with SLIM1 (Dietzen et al., 2020). Our findings suggest that 

the OX-SlEIL3 plants could mimic a sulfate deficiency treatment by activating regulatory 

pathways associated with sulfate uptake, thereby explaining the increase in sulfur levels. 

However, further studies are necessary to confirm this hypothesis and elucidate the underlying 

mechanisms. 

      To confirm our hypothesis and validate the function of SlEIL3 as a master regulator of sulfate 

deficiency gene expression responses we performed an RNA-seq analysis of OX-SlEIL3 plants. 

We observed a higher accumulation of DEG genes due to genotype much higher that the DEG 
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due to sulfate deficiency treatment, in addition to the high enrichment of our study gene lists in 

comparison to other sulfate deficiency treatments in Arabidopsis (Maruyama-Nakashita et al., 

2006; Dietzen et al., 2020) and the OX-SLIM1 plants (Apodiakou et al., 2024) which led us to 

assume that the overexpression of SlEIL3 manage to imitate a sulfur deficiency treatment and its 

able to exacerbate this response, the same trend that we observed in the OX-SlEIL3 plants 

phenotype.  

     The TFs SLIM1 and SlEIL3 were identified in a phylogenetic analysis of 1,051 EIN3/EIL 

genes from 120 species, which revealed SlEIL3 as a closely related homolog of SLIM1 

(Fernández et al., 2024). However, SlEIL3 exhibits distinct regulatory behavior, as its expression 

is upregulated by sulfate deficiency (Canales et al., 2020), in contrast to SLIM1, whose transcript 

levels and subcellular localization remain unaffected by sulfate availability (Maruyama-

Nakashita et al., 2006). Our network analysis of SlEIL3 binding predictions demonstrated that 

SlEIL3 and SLIM1 share highly conserved regulatory pathways, since SlEIL3 is predicted to 

bind multiple of its regulatory targets found by overexpression, many of which were also 

identified as SLIM1 targets (Maruyama-Nakashita et al., 2006; Piotrowska et al., 2022; 

Rakpenthai et al., 2022). These findings demonstrate the accuracy of our tomato GRNs in the 

prediction of sulfate deficiency regulatory cascades and highlight the conserved nature of the 

regulatory mechanisms under the control of the SlEIL3 and the SLIM1 TFs. While our analysis 

was conducted in Arabidopsis plants instead of tomato, the use of this model system is justified, 

as we demonstrated in Fernandez et al. (2024) that SlEIL3 and its Arabidopsis homolog share 

over 88% sequence similarity in their DNA-binding domains. Nevertheless, to conclusively 

confirm SlEIL3's function in tomato, further validation to demonstrate the regulatory control of 

TF SlEIL3 in tomato, we recommend studying knockout experiments in tomato plants or by 
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directly assessing SlEIL3's regulatory interactions with its target genes via TF-binding assays 

such as ChIP-seq or TARGET (Bargmann et al., 2013, Preprint). 

     The GO analysis of DEGs on OX-SlEIL3 plants revealed significant enrichment in diverse 

biological processes, revealing that this TF regulatory effect is not limited to sulfate metabolism 

control, regulatory cascades involving stress response pathways, including plant immune 

responses mediated by salicylic acid and ABA may indicate an active survival strategy during 

sulfate deficiency, potentially linked to the observed growth inhibition phenotype. The processes 

of growth regulation, cell wall metabolism, and senescence all highlight the complicated 

limitations that plants face during nutrient starvation stress (Zhang et al., 2020). The integration 

of sulfate-specific responses with broader metabolic and stress pathways may be responsible for 

the altered growth rates and eventual repression observed during sulfate deprivation observed in 

sulfate starved plants (Canales et al., 2020; Dietzen et al., 2020; Fernández et al., 2024). 

 

Model of regulatory effect of TFs during sulfate deficiency in tomato 

      We developed a model to elucidate the role of key TF regulators in the sulfate deficiency 

response of Solanum lycopersicum. Our findings show that most of the TFs exhibit sulfate-

specific regulatory potential, with a high percentage of their target genes found as differentially 

expressed during sulfate deficiency. Notably, the SlEIL3 emerged as the most prominent and 

specific regulator in this response. 

    In order to further explore its function, we generated OX-SlEIL3 Arabidopsis plants, which 

demonstrated a phenotype of accelerated growth and increased sulfate accumulation, 

accompanied by activation of sulfate deficiency marker genes. Analysis of the genes in these 
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plants identified key regulators potentially driving the observed phenotype. The TFs MYB1, 

MYB60, and NAC1, known to mediate auxin signaling and promote plant growth (Yang et al., 

2020), were significantly upregulated. Additionally, NAC016 and NAC046, associated with 

senescence regulation in Arabidopsis (Kim et al., 2016), as well as WRKY70±75, known 

regulators of root development in tomato (Rosado et al., 2022), were also induced. Furthermore, 

AIR12 and SHY2, which play essential roles in auxin response and root development (Gibson 

and Todd, 2015)��VXSSRUW�6O(,/�¶V�LQYROYHPHQW�LQ�JURZWK�UHJXODWLRQ��7KH�LQGXFWLRQ�RI�3,)���D�

TF involved in photosynthesis and reproductive development (Liu et al., 2013; Rosado et al., 

2016) , further supports its role in developmental regulation. Additionally, genes involved in 

sulfate metabolism²ATPSs, APRs, APSKs, and sulfate-responsive genes such as SDIs, LSUs, 

GGCC, and Chac²were found as DEG in the OX-SlEIL3 plants, consistent with their 

established roles as sulfate deficiency markers in Arabidopsis and other crops (Fernández et al., 

2024). 

These findings support our hypothesis that TFs such as SlEIL3 regulate sulfur metabolism while 

also influencing broader biological processes, which are likely to contribute to the phenotypic 

growth changes observed in our overexpressing plants. However, further analysis will be 

necessary to determine whether these important physiological changes are caused directly by the 

SlEIL3 effect in the control of plant growth and stress responses. Additionally, we do not rule 

out the possibility that the other important TFs found in this research could also play a role in 

coordinating sulfate deficiency gene expression and associated phenotypic responses. 
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VIII.   CONCLUSION 
 

This investigation illustrates the substantial potential of utilizing the extensive omics data stored 

in online repositories to enhance our comprehension of non-model organisms. By meticulously 

evaluating and interpreting data generated in a wide set of conditions, bioinformatics can detect 

crucial insights about the internal regulation of cells and find resources to enrich the scientific 

knowledge for these species. Specifically, the generation of GRNs is a valuable tool for 

deciphering regulatory cascades, giving light on the intricate signaling cascades that govern 

critical biological processes. Our findings demonstrate that GRNs can be positively enhanced by 

the integration of multiple omic datasets and demonstrated the power of GRNs to find molecular 

regulators in charge of responses to biologically relevant problems such as sulfate deficiency 

and identifying important regulators with potential implications in crop development. Notably, 

TFs such as SlEIL3 function as crucial control points in signaling cascades, because the validated 

role of EIL3 in Arabidopsis and the potential effects discovered in this investigation for tomato 

plants SlEIL3 is predicted to perform equivalent regulatory functions for other major crop 

species. Additionally, given its impact on plant growth and sulfate uptake, we believe that SlEIL3 

plays an important role in improving crop resilience and nutritional quality. As future directions, 

its necessary improve and validate the answers provided by GRNs, with experimental 

verification of the key TFs and the target genes identified in this study, possibly by employing 

loss-of-function mutants or determining the TFS binding sites in vivo, The knowledge generated 

by the analysis of non-model plant GRNs could be used to develop techniques to improve crop 

performance in a variety of environments, paving the way for more robust and productive 

agricultural systems. 
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S. FIGURE N°1. Heatmap of enrichment levels (FDR adj.p.val< 0.05) representing GO 
terms calculated for organ-specific genes. 
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S. FIGURE N°2. Scale-free connectivity distribution of tomato organ-specific GENIE3 
generated GRNs from tomato roots, leaves, flowers, fruits and seeds.   
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S. FIGURE N°3. Accuracy analysis of organ-specific GRNs. Receiver Operating 
Characteristic (ROC) curves (a) and Precision-Recall (PR) curves (b) comparing organ-specific 
GRNs to ChIP-seq validation networks. The shaded areas indicate variability across multiple 
iterations. Black and grey lines represent the maximum and minimum quartiles of randomly 
generated TF-target pairings, respectively. 
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S. FIGURE N°4. Scatterplots showing the correlation between GRN GENIE3 scores and 
GCN HRR scores. Colored lines represent the trend of data distribution, with colors indicating 
the organ of origin. 

 
S. FIGURE N°5. GSEA of top 5 most connected TFs shared across organ-level GRNs. Dot 
plot of the results of a GSEA (FDR adj.p.val< 0.05) representing enriched GO terms for the top 
five most connected TFs shared across organ-specific GRNs. The size and color of the dots 
indicate the significance and enrichment levels, respectively. 
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S. FIGURE N°6. Organ-specific GRNs of SlGBF3 onABA-related target genes. Triangles 
represent TFs, rectangles represent target genes. Node colors indicate function. Blue-bordered 
nodes indicate DEGs from drought-stressed leaves (Gao et al., 2019). Edge darker shades 
indicate accumulated regulatory evidence. 
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