

FORMULACIÓN DE UNA SOLUCIÓN ENERGÉTICA EN BASE A COGENERACIÓN PARA ESCUELA BÁSICA Y POSTA RURAL EN SAN JOSÉ DE MARCHIGÜE, REGIÓN DEL LIBERTADOR BERNARDO O'HIGGINS

INTRODUCCIÓN

- ✓ Demanda Energética: Electricidad y Calor
- ✓ Temperatura Ambiente
- ✓ Cogeneración

✓ General

Formulación de una solución energética basada en la autosustentabilidad energética de la Escuela Básica San José y la Posta de Salud Rural de San José de Marchigüe, comuna de Pichidegua, VI Región del Libertador General Bernardo O'Higgins.

✓ Específicos

- Realizar un diagnóstico de la situación energética actual de ambos establecimientos.
- ---> Identificar las demandas energéticas de ambas edificaciones para el diseño de un sistema de Cogeneración, definiendo su viabilidad.
- Presentar la solución energética en base a Cogeneración para su implementación.

✓ Envolvente Térmica

Eficiencia Energética

Confort Térmico

- ✓ Eficiencia Energética
- Confort Térmico

✓ Envolvente Térmica

Es el conjunto de cerramientos que separan el exterior con el interior de un recinto habitable. Estos cerramientos pueden ser complejos de techumbre, muros perimetrales, muros traslúcidos (ventanas) y pisos ventilados, y se ordenan de la misma manera en relación con su importancia.

Corporación de Desarrollo Tecnológico (CDT) de la Cámara Chilena de la Construcción (CChC)

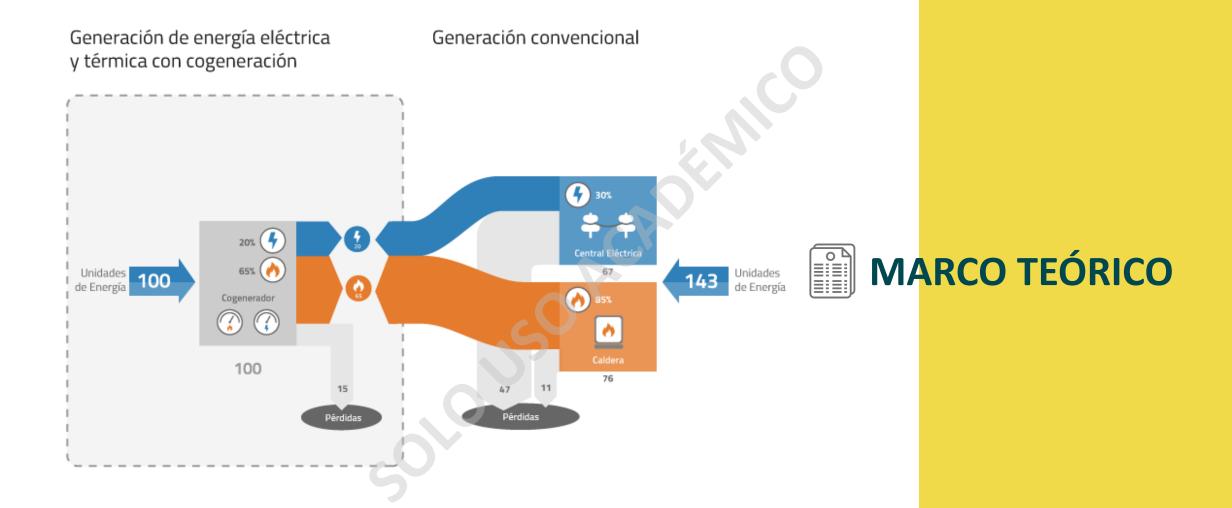
✓ Envolvente Térmica

✓ Confort Térmico

✓ Eficiencia Energética

☼ El uso eficiente de la energía es reducir la cantidad de energía eléctrica y de combustibles que utilizamos, pero conservando la calidad y el acceso a bienes y servicios. Agencia Chilena de Eficiencia Energética (AChEE)

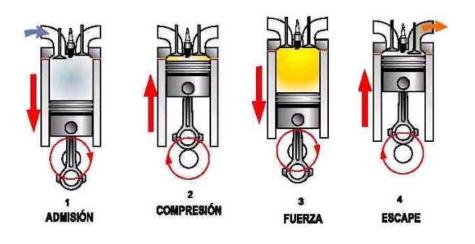
© En febrero de 2021, se publicó en el Diario Oficial la primera Ley de Eficiencia Energética del país (Ley N.º 21.305), para promover el uso eficiente de los recursos energéticos del país. (Ministerio de Energía y Biblioteca del Congreso Nacional 2021)

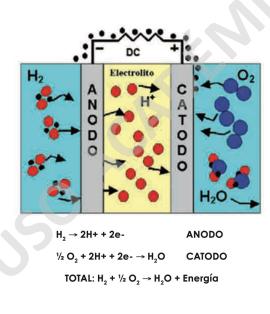

ANTECEDENTES GENERALES

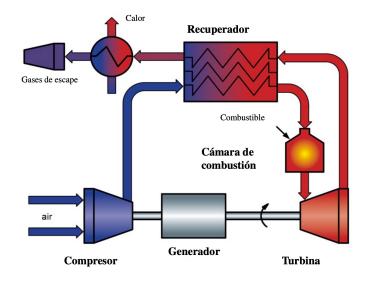
- ✓ Envolvente Térmica
- ✓ Eficiencia Energética

✓ Confort Térmico

- El confort térmico es la sensación de un individuo frente a un ambiente térmico determinado. La Norma ISO 7730 lo define como "una condición mental en la que se expresa la satisfacción por el ambiente térmico".
- Según la OMS, la temperatura de confort se sitúa entre los 16ºC y 21ºC.
- Para poder llegar a la sensación de confort, las ganancias y pérdidas de energía deben estar en equilibrio, logrando un balance térmico que conserve la temperatura normal.


COGENERACIÓN Y EFICIENCIA ENERTÉTICA APLICADA

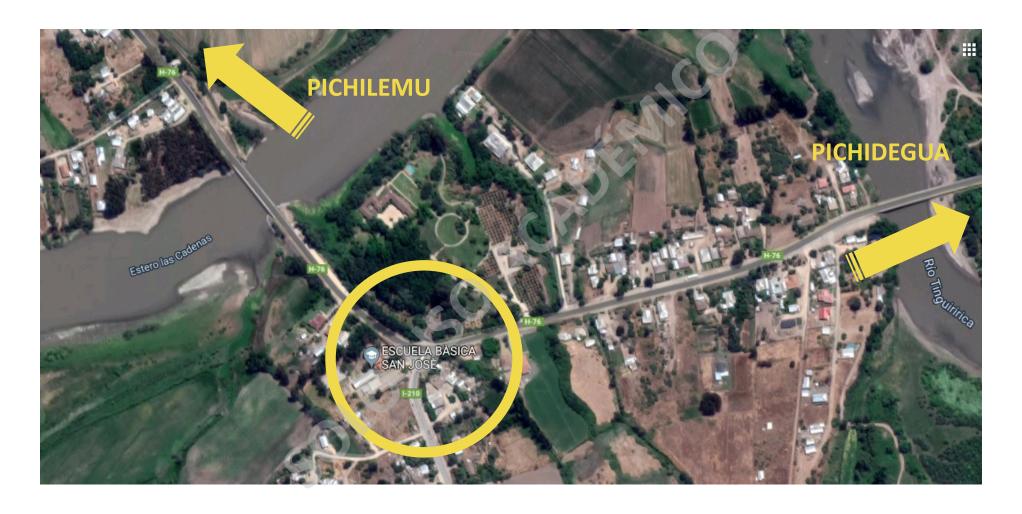



DIFERENTES TECNOLOGÍAS DE COGENERACIÓN

- ✓ Motor Alternativo de Combustión Interna
- ✓ Celdas de Combustible

✓ Microturbina de Gas

LEY Nº20.571 DE GENERACIÓN DISTRIBUIDA



METODOLOGÍA 🗘

- ✓ Diagnóstico ambos establecimientos
- ✓ Análisis de demanda energética
- ✓ Funcionamiento del sistema

CASO DE ESTUDIO

CASO DE ESTUDIO

CASO DE ESTUDIO

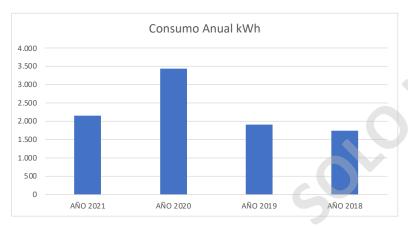
ESCUELA BÁSICA SAN JOSÉ

POSTA DE SALUD RURAL DE SAN JOSÉ DE MARCHIGÜE

DIAGNÓSTICO

- ✓ Consumo Eléctrico
- ✓ Consumo ACS
- ✓ Consumo Calefacción





Consumo Eléctrico Escuela 4 años

Consumo Eléctrico PSR 4 años

Fuente: Boletas de consumo

CARENCIAS ESCUELA

- ✓ Calefacción sólo en sala pre básica
- ✓ No se consume ACS (sólo JUNAEB)
- ✓ Cada vez que hay un accidente vehicular o mucho viento se corta la luz

CARENCIAS POSTA SALUD RURAL

- ✓ No hay sistema de calefacción
- ✓ No se consume ACS (sólo la vivienda)

RESULTADOS

> CALEFACCIÓN Y TEMPERATURA DE CONFORT

- ✓ Decreto 548 MINEDUC
- ✓ NCh. Nº 1079
- ✓ Salto térmico hasta los 16ºC

- ✓ Decreto 548 MINEDUC
- ✓ NCh. № 1079
- ✓ Salto térmico hasta los 16ºC

> CALEFACCIÓN Y TEMPERATURA DE CONFORT

✓ Ley de enfriamiento de Newton

$$Q = A \cdot U \cdot (T_{interior} - T_{exterior})$$

A: Área de transferencia de calor [m²]

U: Transmitancia térmica [W/m²K]

T: Temperatura

La ley del enfriamiento de Newton establece que la tasa de pérdida de calor de un cuerpo es proporcional a la diferencia de temperatura entre el cuerpo y sus alrededores.

Área de transferencia de calor

Superficie (m2)	Techumbre	Muros	Ventanas	Puertas	Piso Perimetral
Escuela	427,2	371,5	79,7	26,1	159,1
Posta + vivienda	314,79	194,89	74,61	11,59	106,76

Transmitancia Térmica

U [W/m2K]	Techumbre	Muros	Ventanas	Puertas
Escuela	0,47	1,9	5,8	1,49
Posta + vivienda	0,47	1,9	5,3	5,3

RESULTADOS

Promedio temperatura para cada mes y hora del año

23	17	17	16	13	10	8	8	9	10	12	14	15		
23	18	18	17	13	11	9	9	10	11	13	15	16	_	26
21	20	19	18	14	12	9	9	10	12	14	16	18		
20	21	21	19	15	12	10	10	11	13	15	17	19		24
19	24	23	21	17	13	11	11	12	14	17	19	22		24
18	25	25	23	19	15	12	12	13	16	18	21	23		
17	- 26	26	25	20	16	13	13	15	17	19	22	25		22
16	- 27	27	25 25	20	17	13	13	15	17	20	23	25		
15	27	26	25	21	16	13	13	15	17	20	23	25		20
$\frac{15}{14}$	- 26	25	23	20	15	13	12	14	16	19	23	24		
13	24	23	23	18	14	12	11	13	15	18	21	23		18
12	22	23	20	16	13	10	10	11	13	16	19	23		
11	20		18		11		8		12		19	19		°C
10	18	20	16	14 12	9	9	7	10 8	10	15 13	15			16
09	17	16	14	11	8	7	6	7	8	11	13	17 - 15 -		
08	15	14	12	9	8	6	6	6	7	9	11	13	-	14
08	- 14	13	11	9	8	6	6	6	7	8	10	12		
06	13			9	8	7	6		7					12
05	- 13	12	11	9	8	7	6	6 7	7	8	10 10	11 -		
	-	13	11		8		6		8			11 -		10
04	13	13	12	10		7		7		9	10	12		10
03	- 14	14	13	10	9	7	7	7	8	9	11	12		
02	14	14	13	11	9	8	7	8	9	10	11	13		8
01	15	15	14	11	9	8	7	8	9	10	12	13		
00	16	16	15	12	10	8	8	8	10	11	13	14		$_{6}$
	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic		

Fuente: Explorador Solar

$$Q = A \cdot U \cdot (T_{interior} - T_{exterior})$$

			Dif	erencia	de tº de	bido al s	alto téri	nico has	ta los 16	5ºC		
23:00	0	0	0	3	6	8	8	7	6	4	2	1
22:00	0	0	0	3	5	7	7	6	5	3	1	0
21:00	0	0	0	2	4	7	7	6	4	2	0	0
20:00	0	0	0	1	4	6	6	5	3	1	0	0
19:00	0	0	0	0	3	5	5	4	2	0	0	0
18:00	0	0	0	0	1	4	4	3	0	0	0	0
17:00	0	0	0	0	0	3	3	1	0	0	0	0
16:00	0	0	0	0	0	2	2	1	0	0	0	0
15:00	0	0	0	0	0	3	3	1	0	0	0	0
14:00	0	0	0	0	1	3	4	2	0	0	0	0
13:00	0	0	0	0	2	4	5	3	1	0	0	0
12:00	0	0	0	0	3	6	6	5	3	0	0	0
11:00	0	0	0	2	5	7	8	6	4	1	0	0
10:00	0	0	0	4	7	8	9	8	6	3	1	0
09:00	0	0	2	5	8	9	10	9	8	5	3	1
08:00	1	2	4	7	8	10	10	10	9	7	5	3
07:00	2	3	5	7	8	10	10	10	9	8	6	4
06:00	3	4	5	7	8	9	10	10	9	8	6	5
05:00	3	3	5	7	8	9	10	9	9	8	6	5
04:00	3	3	4	6	8	9	10	9	8	7	6	4
03:00	2	2	3	6	7	9	9	9	8	7	5	4
02:00	2	2	3	5	7	8	9	8	7	6	5	3
01:00	1	1	2	5	7	8	9	8	7	6	4	3
00:00	0	0	1	4	6	8	8	8	6	5	3	2
	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sept	Oct	Nov	Dic

	Demanda Térmica PSR + vivienda	33.909 [kWh/anual]
--	--------------------------------	--------------------

Demanda Térmica Calefacción Escuela 21.700 [kWh/anual]

> AGUA CALIENTE SANITARIA

✓ Energía Necesaria para producir ACS

$$E_{ACS} = \frac{1}{3.600} \cdot \boldsymbol{\rho} \cdot \boldsymbol{C}_{ACS} \cdot (\boldsymbol{t}_{ACS} - \boldsymbol{t}_{AF}) \cdot \boldsymbol{C}_{p}$$

E_{ACS} : Energía para producir agua caliente sanitaria [kWh/día]

 ρ : Densidad del Agua [kg/l] = 0,983

C_{ACS} : Consumo de Agua Caliente Sanitaria [l/día]

t_{ACS} : Temperatura de ACS [°C]

t_{AF} : Temperatura de agua fría [°C]

 C_p : Calor específico del agua $[kJ/kg \cdot K] = 4,185$

Manual de metodología y evaluación social de proyectos de agua caliente sanitaria domiciliaria – Ministerio de Desarrollo Social y Familia (2019)

> AGUA CALIENTE SANITARIA

Ítem	Unidad	Valor Escuela
Consumo criterio	[l/día/persona]	5
Número de alumnos	persona	71
Coef. Simultaneidad	-	0,9
Consumo Diario	[1/día]	320
Consumo Anual	[m3/año]	117
Demanda Térmica Anual	[kWh/anual]	5.944

Ítem	Unidad	Vivienda	Posta Rural
Consumo criterio Tabla 10	[l/día/persona]	40	8
Número de personas	persona	4	8
Coef. Simultaneidad	-	0,9	0,9
Consumo Diario	[l/día]	144	58
Consumo Anual	[m3/año]	53	21
Demanda Térmica Anual	[kWh/anual]	2.679	1.072

EQUIPOS DE COGENERACIÓN

(65.304 kWh/anual) : 7,45 kW Demanda Térmica

: 1,2 kW > Demanda Eléctrica (10.310 kWh/anual)

Celda de Combustible

Motor alternativo de Combustión Interna

Microturbina

C65 ICHP Microturbine

EQUIPOS DE COGENERACIÓN

Proveedor	Helbio	EC POWER	ISPG Distribuidor Capstone Chile		
Modelo del Equipo	H2PS-5	XRGI 6	C65		
Tipo de tecnología	Celda de Combustible	Motor Alternativo	Microturbina		
Tipo de Celda	PEM				
Combustible	GN, GLP, Biogás	GN	GN		
Potencia Eléctrica nominal	5 [kW]	6 [kW]	65 [kW]		
Potencia Térmica nominal	7 [kW]	12,4 [kW]	70 [kW]		
Eficiencia global	85%	92,40%	90%		
Eficiencia eléctrica	35%	30,10%	28%		
Eficiencia térmica	50%	62,30%	62%		
Capacidad de modulación	40 a 100%	50 a 100%	-		
Dimensiones (largo x ancho x alto)	0,65 x 0,75 x 1,65 [m]	0,93 x 0,64 x 0,96 [m]	0,76 x 2,20 x 2,36 [m]		
Peso	200 [kg]	440 Kg	Entre 998 y 1.364 [kg]		

> Demanda Térmica : 7,45 kW : 1,2 kW > Demanda Eléctrica

EVALUACIÓN ECONÓMICA

- > INGRESOS
- ✓ Venta de energía eléctrica a la red
- > EGRESOS
- ✓ Costo de la Energía primaria (GN)
- ✓ Mantenciones
- ✓ Depreciación
- ✓ Gastos Financieros (Adquisición y puesta en marcha del equipo CHP)

> SUPUESTOS

- ✓ Valor de Instalación y puesta en Marcha de equipo CHP equivale a un 3% del valor comercial
- ✓ Mantención anual 5% del valor comercial
- ✓ Depreciación según tabla SII= 10 años
- ✓ Financiamiento a 5 años con una tasa de 10%
- ✓ Horizonte de evaluación a 20 años, aplicando tasa de descuento de un 12%
- ✓ Combustible utilizado en los equipos corresponde a Gas Natural

EQUIPO CHP CAPSTONE C65 (Microturbina)

/al	lores	en	M\$/	'año	
-----	-------	----	------	------	--

valui es en ivis/ano									
	Año 0	Año 1	Año 2	Año 3	Año 5	Año 6	Año 10	Año 15	Año 20
Ingresos por ventas	0	43.480	43.480	43.480	43.480	43.480	43.480	43.480	43.480
Costos Energía	0	-31.123	-31.123	-31.123	-31.123	-31.123	-31.123	-31.123	-31.123
Margen Bruto	0	12.357	12.357	12.357	12.357	12.357	12.357	12.357	12.357
Mantenciones (-)	0	-7.179	-7.179	-7.179	-7.179	-7.179	-7.179	-7.179	-7.179
Depreciación (-)	0	-14.359	-14.359	-14.359	-14.359	-14.359	-14.359	0	0
Gastos Financieros (-)	0	-1.232	-990	-746	-251				
UAII	0	-10.413	-10.171	-9.926	-9.431	-9.181	-9.181	5.178	5.178
Impuestos (27%)	0	0	0	0	0	0	0	-1.398	-1.398
UDII	0	-10.413	-10.171	-9.926	-9.431	-9.181	-9.181	3.780	3.780
Depreciación (+)	0	14.359	14.359	14.359	14.359	14.359	14.359	0	0
Gastos Financieros (+)	0	1.232	990	746	251	0	0	0	0
Financiamiento 5 años (+)	147.893	0	0	0	0	0	0	0	0
Cuota Crédito (-)	0	-30.322	-30.322	-30.322	-30.322	0	0	0	0
Inversión									
Compra Equipo (-)	-143.585	0	0	0	0	0	0	0	0
Instalación y Puesta en Marcha (-)	-4.308	0	0	0	0	0	0	0	0
Flujo Caja Final	0	-30.322	-30.322	-30.322	-30.322	5.178	5.178	3.780	3.780

INDICADORES DE EVALUACIÓN

VAN	-\$91.837
TIR	-8,2%

VALOR REFERENCIAL EQUIPO: USD 162,500 *

Se puede concluir que el margen operativo con este equipo es positivo desde el periodo nº6 y que se logran obtener utilidades desde el 11vo año, pero no es rentable la implementación de esta solución energética en términos de inversión por sí misma.

*: Valor según la Agencia de Protección Ambiental de Estados Unidos y su división de CHP (EPA Combined Heat and Power Partnership)

EQUIPO CHP EC POWER WRGI 6 (Combustión Interna)

Valores en M\$/año

valores en iviç/ano									
	Año 0	Año 1	Año 2	Año 3	Año 5	Año 6	Año 10	Año 15	Año 20
Ingresos por ventas	0	3.275	3.275	3.275	3.275	3.275	3.275	3.275	3.275
Costos Energía	0	-5.799	-5.799	-5.799	-5.799	-5.799	-5.799	-5.799	-5.799
Margen Bruto	0	-2.523	-2.523	-2.523	-2.523	-2.523	-2.523	-2.523	-2.523
Mantenciones (-)	0	-398	-398	-398	-398	-398	-398	-398	-398
Depreciación (-)	0	-795	-795	-795	-795	-795	-795	0	0
Gastos Financieros (-)	0	-68	-55	-41	-14				
UAII	0	-3.784	-3.771	-3.757	-3.730	-3.716	-3.716	-2.921	-2.921
Impuestos (27%)	0	0	0	0	0	0	0	0	0
UDII	0	-3.784	-3.771	-3.757	-3.730	-3.716	-3.716	-2.921	-2.921
Depreciación (+)	0	795	795	795	795	795	795	0	0
Gastos Financieros (+)	0	68	55	41	14	0	0	0	0
Financiamiento 5 años (+)	8.191	0	0	0	0	0	0	0	0
Cuota Crédito (-)	0	-1.679	-1.679	-1.679	-1.679	0	0	0	0
Inversión									
Compra Equipo (-)	-7.952	0	0	0	0	0	0	0	0
Instalación y Puesta en Marcha (-)	-239	0	0	0	0	0	0	0	0
Flujo Caja Final	0	-4.600	-4.600	-4.600	-4.600	-2.921	-2.921	-2.921	-2.921

INDICADORES DE EVALUACIÓN

VAN	-\$27.870
TIR	

Al tener sólo valores negativos en el flujo de caja en cada período, no se puede calcular la Tasa Interna de Retorno, por eso no aparece ningún valor en los indicadores de evaluación.

VALOR REFERENCIAL EQUIPO: USD 9,000 *

^{*:} Valor según la Agencia de Protección Ambiental de Estados Unidos y su división de CHP (EPA Combined Heat and Power Partnership)

EXECUTION CONCLUSIONES

- La Cogeneración a pequeña escala basada en tecnologías de microturbinas de gas, celdas de combustible y motores alternativos de combustión interna, además de las otras tecnologías desarrolladas para aplicaciones de mayor tamaño, representan un polo de desarrollo e incentivo para la descarbonización de la matriz energética del país y dar paso a energías más limpias y eficientes.
- ➤ Si bien estas tecnologías se están actualizando año tras año y se presentan en diferentes ferias alrededor del mundo, la tecnología aún representa un alto valor de mercado para su implementación a nivel local.
- La Cogeneración a pequeña escala representa además una gran oportunidad para lugares como la Escuela Básica de San José y la Posta de Salud Rural de San José de Marchigüe, donde se requiere descentralizar la producción energética eléctrica para lograr mayor fiabilidad de la misma, además de incorporar calefacción distrital. Se espera que en un futuro cercano los valores de estos equipos bajen y su utilización se incremente de manera importante.

- ➤ El análisis económico arroja que los resultados no son auspiciosos para la implementación de esta tecnología en La Escuela Básica y la Posta de Salud Rural, siendo el costo de los equipos CHP la barrera de entrada. Sin embargo, en un análisis más sensible se puede concluir de todas maneras que, según la ruta para la descarbonización del país y la estrategia nacional del Hidrógeno Verde, el Estado debería impulsar la implementación de esta y otras tecnologías a través de distintos programas y financiamientos.
- Se observa como inevitable la participación del Estado para lograr cambiar la matriz energética del país a una más sostenible y ecológica, con la participación de las comunidades rurales y eliminando las altas barreras de entrada, tornándose cada vez más competitivas. En el caso de La Escuela Básica y la Posta de Salud Rural la contribución puede ir directamente a la adquisición de los equipos CHP, subsidios a los combustibles, nuevas regulaciones de precios por energía generada e inyectada a la red del sistema eléctrico nacional (SEN), etc., que harían viable la implementación del sistema.
- Se visualiza como posible que podrían someterse a análisis a empresas ESCO (Energy Service Company), que asumen la inversión e implementación de las nuevas tecnologías eficientes y luego se pagan con los ahorros generados en un período de tiempo a convenir entre las partes.

MUCHAS GRACIAS