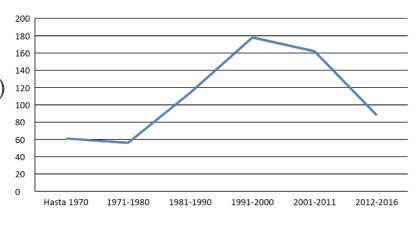


Facultad de Ciencias INGENIERÍA EN CONSTRUCCIÓN

APLICACIÓN DEL SISTEMA ECHOSTONE EN CHILE PARA LA CONSTRUCCIÓN DE VIVIENDAS SOCIALES

Proyecto de Título para optar al Título de Constructor Civil


Estudiante: Juan Benavides v.

Profesor guía: Michael Silva E.

INTRODUCCIÓN

- Motivación: Erradicar los campamentos en Chile
 - · Vivienda social: Rápida de construcción y de bajo costo pero de baja calidad
- Realidad de los campamentos en Chile
 - De un 76% de personas que viven en campamentos:
 - 91% sin sistema de alcantarillado
 - 48% sin acceso formal a electricidad (3,8% sin acceso)
 - 61,5% con ingresos menor al sueldo mínimo
 - Fuente: Encuesta Encuesta de CIS Techo-Chile 2015

Cantidad de formacion de campamentos por década

NORMATIVA Y LEYES

- Subvención a través del DS 19.
- Regulación constructiva DFL 2.
- Titulo VI OGUC:
 - Vivienda económica: Construcción conforme a las disposiciones del DFL 2, no supera los 140m2.
 - Vivienda social: Costo inferior a 400uf, puede aumentar en 30% en caso de condominios.

SISTEMAS CONSTRUCTIVOS Y TECNOLOGÍAS

Panel SIP

Structural Isolated Panel

Buena aislación térmica, resistencia estructural y fácil instalación.

Hormigón Celular

CLC (Cellular lightweght concrete)

Bloques de hormigón con aire incorporado

ECHOSTONE

- Hormigón celular bombeado fabricado in situ
 - Aecrete 625
 - Espumógeno
- Proyectos a nivel mundial
 - Nigeria
 - Panamá

ECHOSTONE

SISTEMA CONSTRUCTIVO

Preparación del terreno

Moldaje

Armadura

Hormigonado

Terminaciones

OBJETIVOS

- General
 - Evaluar el uso del sistema ECHOSTONE en Chile como solución constructiva para viviendas sociales y económicas
- Específicos
 - Generar una dosificación que permita mantener las características del hormigón del sistema.
 - Cumplir con la resistencia mínima exigida por la norma.

METODOLOGÍA

- Análisis de las características del sistema con respecto a normativa chilena
- Selección del punto mas importante a desarrollar para lograr el cumplimiento de la norma
- Laboratorios técnicos
- Comparación de resultados
- Conclusión

IMPORTANTE

- Norma NCH 170 85
 - Actualizada el 2016

COMPARATIVA CON LA NORMA CHILENA

Tabla de Elección de Hormigón según norma NCH 170 85						
Grado	Solicitación y Exposición	Elementos Estructurales				
	Solicitación y Exposición	En masa	Armados	Pretensados		
H5	Elementos poco solicitados y sin	Cimientos corridos,				
113	peligro de heladas	emplantillados, etc.	_			
HI0	Elementos poco solicitados y con	Muros de contención,	_			
1110	peligro de heladas	Radiares	_			
HI5-	Elementos medianamente					
H20	solicitados y con peligro de					
1120	heladas	Elementos corrientes de la construcción, pavimentos, prefabricados				
H20-						
H35	Elementos altamente solicitados					
	con o sin peligro de heladas		-	Elementos especiales de la		
>H35	con o sin pengro de neladas	-		construcción, prefabricados en		
				taller.		

COMPARATIVA CON LA NORMA CHILENA

Resultados de fuerza a la compresión del sistema Echostone

(muestras de I5xI5xI5 cm)

Referencia de probeta	densidad	Carga de rotura (Kn)	Fuerza de compresión (MPa)
Fc1000-1	1000	74,8	3,29
Fc1000-2	1010	78,5	3,50
FC1000-3	980	73,3	3,28
Fc1200-1	1330	128,2	5,73
Fc1200-2	1310	136,0	6,02
Fc1200-3	1310	135,7	5,99

Tabla de clasificación de hormigones según norma NCH 170 85

(muestras de 20x20x20cm)

Grado	MPa	Kgf/cm2
H5	5	50
H10	10	100
H15	15	150
H20	20	200
H25	25	250
H30	30	300
H35	35	350
H40	40	400
H45	45	450
H50	50	500

SELECCIÓN DE MATERIALES

Áridos

Fino

Densidad apisonada: 1,56 gr/cm3

Densidad real: 3 gr/cm3

Grueso

• Densidad apisonada: I,89 gr/cm3

Densidad real: 3,3 gr/cm3

Cemento

Polpaico Especial proporcionado por la Universidad

Incorporador de aire

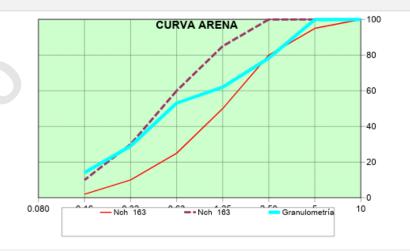
Darafill 200

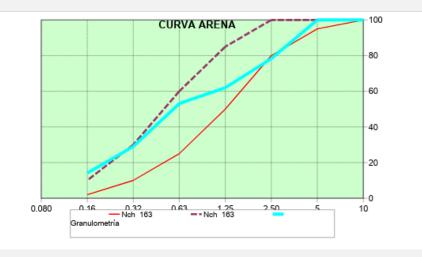
 Incorpora 20 a 30% de aire, plastificante, no afecta tiempos de fraguado, reduce densidad, fácil de bombear, ajuste de fluidez

Arena F					
Malla		gr ret	% ret	% pasa	
ASTM	mm		0	100	
n°4	4,75	27	5,4	94,6	
n°10	2,00	16	3,2	91,4	
n°40	4,25	33	6,6	84,8	
100	0,15	260	52	32,8	
200	0,075	119	23,8	9	
Densidad					
Apisonada		$1,56 gr/cm^3$			
Real		$3 gr/cm^3$			

Arena Gruesa (500gr)						
Malla		gr ret	% ret	% pasa		
ASTM	Mm		0	100		
n°4	4,75	104	20,8	79,2		
n°10	2,00	102	20,4	58,8		
n° 4 0	4,25	137	27,4	31,4		
100	0,15	129	25,8	5,6		
200	0,075	21	4,2	1,4		
Densidad						

 $1,89 \ gr/cm^3$


 $3,3 \ gr/cm^3$


Apisonada

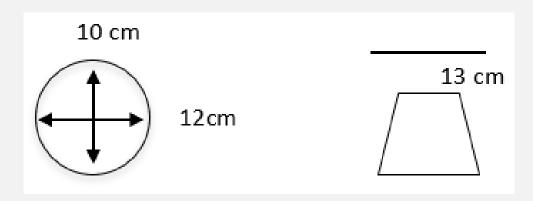
Real

- Dosificación
 - 70/30
 - Árido grueso 70%
 - Árido fino 30%
 - Agua cemento: 0,6
 - Cemento arena: 1:2
 - 80/20
 - Árido grueso 80%
 - Árido fino 20%
 - Agua cemento: 0,6
 - Cemento arena: I:2

DOSIFICACIÓN

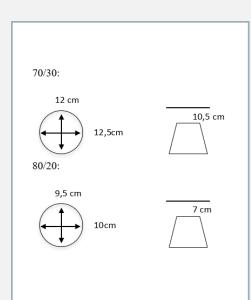
- 70/30
 - Arido fino: 2 kg
 - Árido grueso: 5,2 kg
 - Cemento: 3,6 kg
 - Agua: 2,16 lts
- 80/20
 - Árido fino: 1,35 kg
 - Árido grueso: 5,94 kg
 - Cemento: 3,6 kg
 - Agua: 2,18 lts
- Darafill: 0,0015lts

Ensayos Manuales


Sin aditivo

70/30: 1870,5 kg/m3

80/20: 2303,1 kg/m3


Ensayo Manual

Con aditivo

Se reduce agua de 2 a 1,85 lts

80/20: 2030,33 kg/m3

Ensayo Mecánico

Con aditivo

70/30: 1605,92 kg/m3

80/20: 1619,85/ kg/m3

RESULTADOS ENSAYOS A LA COMPRESIÓN

	Tipo de nuestra	Dosificación	Darafill	Peso Kg	Densidad Kg/m3	Resistencia Mpa
	Mezcla Manual	80/20	No	7,773	2303,11	-
		70/30	No	6,313	1870,52	-
		80/20	Si	6,852	2030,22	7,54
l	Mezcla	70/30	Si	5,42	1605,93	8,92
	Mecánica	80/20	Si	5,467	1619,85	9,2

COMPARACIÓN CON SISTEMAS ACTUALES

VENTAJAS

- Construcción Solida
- Buenas características aislantes
- Sistema constructivo sencillo y rápido
 - Armaduras de bajo diámetro
 - Moldaje tipo, livianos y fáciles de transportar
- Aplicable en lugares remotos
- Poco uso de mano de obra, fácil de instruir

DESVENTAJAS

- Alto costo de implementación inicial
 - Importar maquinaria
 - Desarrollo de moldajes
- Falta de desarrollo
 - Lograr resistencia y tiempos de fraguado requeridos
- Fuerte desarrollo de sistemas alternativos con características similares
- Tener que capacitar mano de obra

CONCLUSIONES

- Gracias a sus ventajas, podría considerarse como alternativa a los sistemas actuales
- Falta de investigación y desarrollo para su uso conforme a la norma chilena
- Falta de desarrollo en el hormigón para lograr las resistencias exigidas por la norma
- Alto costo de implementación
- Trabajo futuro
 - No se alcanzaron los resultados requeridos en el área del hormigón
 - De continuar, podrían lograrse
 - Con desarrollo suficiente es posible la implementación e ingreso al mercado del sistema

GRACIAS