

CONSTRUCCION CIVIL

Facultad de Ciencias

"DISEÑO DE LOS SISTEMAS DE ALCANTARILLADO, AGUA POTABLE Y ELECTRICIDAD PARA LA INFRAESTRUCTURA DE LA BASE DE OPERACIONES AÉREAS CONAF EN AERÓDROMO RODELILLO, REGIÓN DE VALPARAISO".

Proyecto de Título para optar al Título de Constructor Civil

Estudiante: Dangello André Felice Passache

> Profesor guía: Carlos Cabaña Chávez

> > Octubre 2021 Santiago, Chile

ÍNDICE

CAPÍTULO 1: INTRODUCCIÓN9
CAPÍTULO 2: ANTECEDENTES GENERALES
2.1 Corporación Nacional Forestal
2.2 Incendios Forestales
2.3 Brigadas Corporación Nacional Forestal
2.4 Base Brigada Aeródromo Rodelillo 12
2.5 Base de Operaciones aéreas "Rodelillo"
2.6 Importancia de las Bases de Operaciones para combatir Incendios Forestales13
2.7 Importancia de las Instalaciones Sanitarias, Agua Potable y Eléctricas, de forma
General y en Base de Operaciones Aéreas14
CAPÍTULO 3: JUSTIFICACIÓN15
CAPÍTULO 4: OBJETIVOS DE LA INSVESTIGACIÓN16
CAPÍTULO 5: MARCO TEÓRICO17
5.1 Corporación Nacional Forestal
5.2 Incendios Forestales
5.3 Brigadas Corporación Nacional Forestal
5.4 Instalaciones de Alcantarillado
5.5 Instalaciones Eléctricas
5.6 Instalaciones Agua Potable
5.7 Importancia de la participación del Constructor Civil en proyectos de servicios
públicos

CAPÍTULO 6: METODOLOGÍA	19
6.1 Alcances y Limitaciones	21
CAPÍTULO 7: INSTALACIONES ELÉCTRICAS, AGUA POTABLE Y	
SANITARIAS	22
7.1 Diseño de red agua potable	22
7.2 Diseño de red alcantarillado	24
7.2.1 Condiciones básicas y cálculos de las instalaciones sanitarias del Sistema de	
Alcantarillado privado en la Base de Operaciones Aéreas en el Aeródromo de	
Rodelillo	
7.2.2 Sistema de evacuación de Agua Residuales	
7.3 Diseño de red eléctrica	41
7.4 Especificaciones técnicas	
7.4.1.1 Trabajos	43
7.4.1.2 Trabajos Excluidos	44
7.4.1.3 Reglamentos.	44
7.4.1.4 Materiales	44
7.4.1.5 Certificación de Calidad	44
7.4.2 Especificaciones Alcantarillado de Aguas Servidas	44
7.4.2.1 Suministros de Materiales y Equipos	44
7.4.2.2 Piezas de PVC	45
7.4.2.3 Soporte de tuberías	45
7.4.2.4 Cámaras	45
7.4.3 Especificaciones Agua Potable	45
7.4.3.1 Estanques de Agua Potable	45

7.4.3.2 Suministros de materiales y equipos
7.4.4 Especificaciones instalaciones Eléctricas
7.4.4.1 Normas Aplicadas
7.4.4.2 Aclaración
7.4.4.3 Profesional a cargo
7.4.4.4 Materiales y Equipos
7.4.4.5 Tableros en Gabinetes
7.4.4.6 Cableado Interno
7.5 Plan de Trabajo
7.6 Presupuesto50
CAPÍTULO 8: CONCLUSIONES Y RECOMENDACIONES
8.1 Conclusión
8.2 Recomendaciones
CAPÍTULO 9: BIBLIOGRAFÍA54
ANEXOS

ÍNDICE DE FOTOS

IMAGEN N°1: Ubicación Geográfica "Palma 1"	13
IMAGEN N°2: Base de Operaciones Aéreas de Rodelillo. Habitaciones	20
IMAGEN N°3: Base de Operaciones Aéreas de Rodelillo. Aérea común y Baños	21
IMAGEN N°4: Bomba de Succión.	22
IMAGEN N°5: Plano Agua Fría y Plano Agua Caliente	24
IMAGEN N°6: Cámara de Inspección Prefabricada de Polietileno	31
IMAGEN N°7: Cámara de Inspección. Proyecto Base de Operaciones Aéreas	32
IMAGEN N°8: Cámara Desgrasadora de Albañilería	34
IMAGEN N°9: Cámara Desgrasadora Prefabricada de Polietileno	35
IMAGEN N°10: Cámara Desgrasadora. Proyecto Base de Operaciones Aéreas	36
IMAGEN N°11: Fosa séptica de Albañilería	37
IMAGEN N°12: Fosa séptica Prefabricada de Polietileno referencial	38
IMAGEN N°13: Fosa séptica. Proyecto Base de Operaciones Aérea	39
IMAGEN N°14: Pozo Absorbente	40
IMAGEN N°15: Plano de Enchufes	42
IMAGEN N°16: Plano de Iluminación	43

ÍNDICE DE TABLAS

TABLA N°1: Cálculo de Q instantáneo Agua fría, Agua caliente y QMP	23
TABLA N°2: Diámetro de Descargar por Artefacto	25
TABLA N°3: Unidades de Equivalencia Hidráulica	26
TABLA N°4: Capacidad de Tubería de Descarga	27
TABLA N°5: Capacidad de tuberías Horizontales.	28
TABLA N°6: Tabla de Alturas de Cámaras de Inspección y Pendientes	29
TABLA N°7: Diámetro Fosa decantación y Pozo Absorbente	
TABLA N°8: Tabla de Cargas.	41
TABLA N°9: Plan de Trabajo Semanal	49
TABLA N°10: Tabla de Presupuesto	50

RESUMEN

En los últimos años, especialmente la temporada estival, Chile se ha visto afectado por devastadores incendios forestales, muchos de los cuales se han extendido a lo largo de nuestro territorio. En su mayoría, este tipo de catástrofe es producida por los seres humanos, incluso de forma intencional. Por otra parte, y en menor cantidad, algunas son generadas por la naturaleza; como, por ejemplo, la falta de agua y fuertes vientos.

Debido a los incendios forestales que existen en el país, se crearon distintas organizaciones para poder prever y controlar este tipo de catástrofes. Estas organizaciones pueden ser tanto privadas como gubernamentales.

Las organizaciones privadas protegen con recursos propios gran parte de la VII hasta la IX región. Por otra parte, el Estado cumple esta labor a través de la Corporación Nacional Forestal (CONAF), que protege el resto del país sin exceptuar la zona que protege el sector privado.

La finalidad de este proyecto es presentar un diseño de las instalaciones básicas para la Base de Operaciones Aéreas, en el Aeródromo de Rodelillo, Región de Valparaíso. En dicha base se gestiona, controla y concentran todos los recursos para realizar los ataques a los incendios forestales que puedan producirse en la V Región. Este propósito se debe a la carencia de las instalaciones de alcantarillado, agua potable y de electricidad, ya que en la ubicación donde se encuentra la Base de Operaciones Aéreas es aledaña de alguna villa o comunidad que puedan tener abastecedores de servicios públicos ya mencionados.

Esto permitirá crear una propuesta de proyecto que esté a la altura de las necesidades de los brigadistas que deban utilizar dichas instalaciones.

ABSTRACT

In the past few years, especially in summertime, Chile has been affected by devastating forest fires, many of which have spread along our territory. Most of these kinds of catastrophes are generated by the hand of men, even intentionally. On the other hand, in smaller numbers, some of them are generated by natural causes. For instance, lack of water and strong winds.

Due to the forest fires in the county, several organizations, both private and governmental, have been created to prevent and control such events.

Non-governmental institutions protect a great part of the territory from the seventh to the ninth region with their own financial resources. Furthermore, the Chilean State fulfills its duty of protecting the nature through the governmental office responsible for the management of natural resources: Corporación Nacional Forestal (CONAF), that protects the rest of the country regardless of the protected area by the private sector.

The aim of the present project is to present a design to the elementary facilities for the Air Operations Base in Rodelillo's Aerodrome, in Valparaiso Region. All the resources to fight the forest fires that may accur in the fifth region are focused, managed and controlled by this Base. This purpose is due to the lack of sewerage, drinking water and electricity facilities, since the location where the Air Operations Base is located is adjacent to a village or community that may have already mentioned public service providers.

This is going to allow creating a project proposal that meets the needs of the brigade members that must use the facilities.

Capítulo 1: INTRODUCCIÓN

Debido a los constantes incendios forestales en Chile que se propagan sin control en diferentes sectores, produciendo daños sociales, ambientales y económicos, se hace necesario contar con organizaciones que velen por el control y la prevención de estos. Estas catástrofes son ocasionadas en más de un 99% por negligencia humana; algunos de estos incendios son provocados intencionalmente. En una muy menor proporción hay incendios que se producen por fenómenos naturales, tales como tormentas eléctricas. Factores comunes que causan este tipo de incendios descontrolados son la escasez de lluvia y las altas temperaturas que se registran en la época estival.

En el país existen dos sistemas que operan contra los incendios forestales; uno de ello es el del sector privado, tales como, Forestal Arauco, Forestal Mininco, CELCO y Masisa, entre otras empresas. Estos sistemas protegen con recursos propios más de un millón de hectáreas de bosques de uso industrial de variadas especies. Esta cobertura va desde la Región del Maule a la Región de la Araucanía. Por otro lado, la labor del Estado en este ámbito la desarrolla la Corporación Nacional Forestal (CONAF) en su calidad de servicio forestal del Estado que gestiona un Programa de Protección Contra Incendios Forestales en todo el país. CONAF dispone y opera distintas bases de brigadistas a lo largo del país, cuyo único objetivo es el combate contra incendios forestales.

El fin de este proyecto es realizar el diseño de instalaciones de alcantarillado, agua potable y electricidad de la Base de operaciones aéreas de CONAF en el aeródromo de Rodelillo, Valparaíso. Esto permitirá crear un modelo para diseñar y ejecutar dichas instalaciones para la futura base de operaciones aéreas, con altos estándares técnicos que provee la disciplina de la Construcción Civil, toda vez que el funcionamiento de la citada infraestructura debe ser óptimo, en virtud de los recursos que se utilizan en el combate de incendios forestales, donde el más neurálgico y sensible son las personas, es decir, los combatientes que regularmente arriesgan su vida para evitar la propagación de los siniestros y que ello se convierta en tragedias mayores. El descanso y el confort para estos héroes anónimos son fundamentales para su eficiente y eficaz labor en momentos de conflictividad ambiental.

Capítulo 2: ANTECEDENTES GENERALES

2.1 Corporación Nacional Forestal

En Chile en la década de los 60' se presenta la necesidad de contar con un servicio forestal público. Se generó una conciencia sobre los bosques como recurso con potencialidades económicas, lo que despertó el interés por crear una institución que se enfocara directamente en el desarrollo forestal.

En el año 1966 se presenta en el Congreso Nacional el Proyecto de Ley Forestal de "Conservación, protección, y acrecentamiento de los recursos forestales del país". El objetivo principal de esta ley fue lograr la organización del sector forestal, es decir, la conservación y la explotación de los bosques.

Cabe destacar que lo que buscaba el Estado con este proyecto era el desarrollo óptimo del sector forestal mediante instituciones de carácter público.

Finalmente, este proyecto no fue aprobado en el Congreso nacional debido a las diferencias políticas que existían en la época.

Para poder hablar sobre la CONAF, primero debe mencionarse a la Corporación de Reforestación (COREF). La COREF se crea luego del fracaso del Proyecto de Ley Forestal en el Congreso durante el gobierno de Eduardo Frei Montalva. Esta iniciativa financiada por el SAG y por INDAP estaba orientada a la plantación en terrenos privados, buscando así el aumento de los recursos forestales en Chile.

La Corporación Nacional Forestal se crea debido a cambios en los estatutos de la Corporación de Reforestación, gracias a la situación política que se estaba viviendo en 1972 en Chile, es decir, la discusión política sobre el Proyecto de Ley forestal no llega al Congreso. Los cambios realizados están enfocados a la existencia de una organización que responda a las necesidades de manera óptima ante el desarrollo del sector forestal. Es necesario destacar que con la creación de la CONAF se formó el Servicio Forestal de Chile. Uno de los principales objetivos de la CONAF fue dar un orden mayor al sector forestal.

2.2 Incendios Forestales

Según el Ministerio de Agricultura (s.f), el origen de un incendio forestal es de un 99,7% por descuidos o negligencias en la manipulación de calor, o intencionadas por el ser humano ya sea por el bien de este o de forma delictiva. Sin embargo, en distintas partes del mundo también se pueden ocasionar por catástrofes naturales, por ejemplo, a través de la caída de un rayo o por olas de calor, que ayuda al desarrollo de nuevas formaciones vegetales, estimulando la reforestación, abriendo espacios y creando condiciones para la regeneración.

Durante el periodo de incendios forestales, las áreas afectadas son 52.000 hectáreas quemadas en promedio cada año; sin embargo, en algunas ocasiones cuando el incendio es de gran envergadura las áreas afectadas superan las 100.000 hectáreas generando un daño a gran escala en praderas, matorrales, arbolado natural y plantaciones forestales.

En Chile se cuenta con dos áreas que se encargan de la protección contra incendios forestales. Una de ellas es el área privada, en la que operan empresas tales como CELCO, Forestal Mininco, MASISA, Bosques Cautín. Las instituciones nombradas anteriormente utilizan sus propios recursos para combatir los incendios forestales cubriendo más de un millón y medio de hectáreas de plantaciones forestales correspondientes a la Región del Maule, Región del Ñuble, Región del Biobío y por último la Región de la Araucanía.

Por otro lado, el Estado se centra en la Corporación Nacional Forestal (CONAF), la cual cuenta con un programa de manejo del fuego para la protección contra incendios en las demás regiones del país, sin dejar de lado a las pequeñas industrias o viviendas que se podrían ver afectadas. A su vez ambas áreas cuentan con el respaldo de los cuerpos de Bomberos de cada zona, sobre todo en aquellos sectores donde existen poblados o viviendas adyacentes a una gran vegetación.

2.3 Brigadas Corporación Nacional Forestal

Las brigadas de combates contra incendios se conforman, valga la redundancia, por brigadistas y está conformada por un jefe de brigada, dos jefes de cuadrillas; además, cada cuadrilla cuenta con 7 brigadistas.

Es necesario contar con una buena organización por parte de estas brigadas, independiente de la magnitud del incendio. Estas brigadas cuentan con organizaciones de carácter piramidal, es decir, es conformado por un mando principal, mando medio y personal operativo los cuales tienen el deber de aplicar sin cuestionamientos las órdenes dadas por el mando principal. Cabe destacar que las organizaciones por brigada varían dependiendo del área de acción en el que se encuentren.

Dentro de la organización, se verifican distintas funciones, ellas son:

- Función de comando.
- Función de planes.
- Función de Línea.
- Función de Servicios (o logística).

Cabe destacar que dichas funciones son llevadas a cabo por personas que cuenten con los conocimientos y con las habilidades necesarias para poder realizarlas, independiente de cuál sea su labor normalmente dentro de la institución, además de cuál sea su jerarquía.

2.4 Base Brigada Aeródromo Rodelillo

La Base de Brigada Aeródromo de Rodelillo "Palma 1" se ubica en el interior del aeródromo de Rodelillo, región de Valparaíso, comuna de Valparaíso. Coordenadas geográficas son: Latitud -33.06799 y Longitud 71.56006. Esta fue fundada en el año 1970 por el Servicio Agrícola Ganadero, ubicada en la Avenida 3 Norte, Viña del mar, Valparaíso. Dicha base se creó debido a la cantidad de incendios que se estaban produciendo en la Región de Valparaíso. Hoy en día, en esta base se concentran todos los recursos aéreos debido a que en su ubicación geográfica se concentran la mayor ocurrencia de incendios forestales de la región.

Imagen N°1: "Ubicación Geográfica "Palma 1".

Fuente: www.google.cl/maps

2.5 Base de Operaciones Aéreas "Rodelillo"

La base de operaciones aéreas de Rodelillo fue fundada entre 1975 y 1976, y se ubica al interior del Aeródromo de Rodelillo. Es un recinto que alberga a todos los tripulantes de aeronaves que estén de guardia o en procedimientos contra incendios en la región de Valparaíso y que también sirve de pista de aterrizaje y despegue para helicópteros y avionetas. En el costado Norte de la base de operaciones se encuentra la plataforma que se utiliza para transportar a los brigadistas y cargar con agua o rellenar los estanques de los vehículos mencionados anteriormente.

2.6 Importancia de las Bases de Operaciones para combatir Incendios Forestales

Las Bases de Operaciones Aéreas se fueron necesitando a través del tiempo, debido a que durante los incendios forestales no existía una oficina que controlara, dirigiera y se encargara de dirigir las operaciones aéreas que existían en un principio. Hoy en día es en estas bases donde se gestionan todos los recursos de los combates contra incendios forestales. Quienes cumplen esta función son los tripulantes de aeronaves.

2.7 Importancia de las Instalaciones Sanitarias, Agua Potable y Eléctricas, de forma General y en Base de Operaciones Aéreas.

La importancia que tienen las instalaciones sanitarias es fundamental para el desarrollo de las personas, ya que permite dotar de una fuente constante de agua potable y a su vez optimizan la evacuación de todos sus desechos orgánicos y/o no orgánicos. Por otro lado, igual de importante que las instalaciones sanitarias, son las instalaciones eléctricas; éstas dotan de energía a los distintos establecimientos que lo requieran, generando seguridad y confort.

Dentro de una Base de Operaciones Aéreas, las instalaciones mencionadas anteriormente pueden considerarse de suma vitalidad, puesto que estas les permiten a los brigadistas, profesionales, mecánicos y a todo personal de una Base de Operaciones Aéreas mantener el desempeño de cada uno de estos funcionarios. El desempeño esperado debe ser altamente exigente en términos de disponer de una óptima condición física, mental y emocional para enfrentar una actividad en la que arriesgan su vida.

Cabe destacar, que tanto las instalaciones como el respectivo ejecutor de las instalaciones deben ser certificados por el organismo correspondiente y de alta calidad. Respetando siempre las especificaciones técnicas de estas y del proyecto. Esto es debido a que una mala ejecución o calidad del producto pueden desatar problemas graves en artefactos eléctricos o sanitarios.

Capítulo 3: JUSTIFICACIÓN

Debido a la cantidad de incendios que se registran anualmente en la región de Valparaíso, los cuales son atendidos por las 15 brigadas que operan en esta región, los combatientes que integran la sede de operaciones aéreas de Rodelillo, Palma 1, permanecen la mayor parte de su tiempo utilizando estas instalaciones. Estas se encuentran en precarias condiciones, lo que su vez condiciona el desempeño de cada uno de los brigadistas, altamente exigente.

Si no contaran con suficientes implementos para poder desarrollar sus labores diarias durante su permanencia en la Base de Operaciones Aéreas (octubre de un año a abril del siguiente), ya que es en esta época donde se genera la mayor cantidad de incendios en la V región Valparaíso, registro que informa que estos fluctúan entre los 600 y los 900 incendios por año, afectando alrededor de 8850.3 Hectáreas en promedio al año, lo que puede redundar en un mal desempeño de los brigadistas a la hora de un inminente combate contra un incendio.

En el presente proyecto se elabora una propuesta para el diseño de las instalaciones eléctricas, de agua potable y alcantarillado para la Base de Operaciones Aéreas de Rodelillo en módulos de containers, los que se dividen en containers habitacionales, para necesidades básicas, y otros usos que se requieran.

La propuesta busca convertirse en una opción efectiva para enfrentar la necesidad que existe por elevar significativamente la calidad del funcionamiento de la base de operaciones aéreas de Rodelillo, ya que en los últimos 20 años los incendios en la región de Valparaíso ha ido en aumento, obligando a la Corporación Nacional Forestal a redoblar los esfuerzos para evitar su propagación y alcanzar un combate efectivo de los mismos, teniendo a la vista que la bases y el aeródromo están ubicados en un lugares claves para el combate de este flagelo en la región de Valparaíso. La finalidad de la profunda remodelación que se propone para la base de operaciones aérea es que la estadía y el trabajo de cada brigadista sea óptimo y efectivo, factores que permitirán el desempeño acorde a los desafíos que se les plantean a los equipos de combatientes al momento de combatir y extinguir los incendios forestales.

Capítulo 4: OBJETIVOS DE LA INVESTIGACION

4.1 General

Presentar a la Corporación Nacional Forestal una propuesta de diseño y modificación de las instalaciones básicas para la Base de Operaciones Aéreas en el Aeródromo Rodelillo, Región de Valparaíso.

4.1.2 Específicos

- Elaborar el diseño para las instalaciones sanitarias, eléctricas y de agua potable acorde a la Base de Operaciones Aéreas, Aeródromo Rodelillo, Región de Valparaíso.
- Integrar en un plan de trabajo calendarizado las propuestas de diseño y modificación a objeto de orientar técnicamente su ejecución.
- Elaborar la propuesta respectiva para superar las actuales deficiencias que existen en la Base de Operaciones Aéreas del Aeródromo de Rodelillo.

Capítulo 5: MARCO TEÓRICO

5.1 Corporación Nacional Forestal

"La Corporación Nacional Forestal (CONAF) es una entidad de derecho privado dependiente del Ministerio de Agricultura, cuya principal tarea es administrar la política forestal de Chile y fomentar el desarrollo del sector." (Ministerio de Agricultura, s.f)

La CONAF está a cargo por un director ejecutivo llamado Rodrigo Munita Necochea, el cual se encarga de aportar en el desarrollo del país mediante el manejo sostenible de ecosistemas forestales y de elementos de la naturaleza.

5.2 Incendios Forestales

Los incendios forestales, son catástrofes que independiente a su origen arrasan con todo, generando un gran peligro para los seres humanos, viviendas, o al medio ambiente que nos rodea. Su propagación se ve favorecida en zonas rurales, y a su vez a la vegetación seca que pueda existir en estas zonas.

5.3 Brigadas Corporación Nacional Forestal

Grupos de profesionales que deben desarrollar distintas tareas de prevención, control y extinción contra los incendios forestales en sus distintas zonas de ejecución a lo largo del país. Estas pertenecen a una institución organizacional debido a la magnitud de catástrofes forestales que se originan a lo largo del año. Esto les permite realizar ataques precisos y efectivos contra los incendios.

5.4 Instalaciones de Alcantarillado

Sistema de tuberías subterráneas con sentido vertical u horizontal, el cual permite evacuar desde una vivienda las aguas servidas hacia un colector principal que luego esta llega a una planta de tratamiento de aguas servidas, es en este punto donde las aguas son tratadas por

maquinarias de tratamiento de aguas servidas, las cuales separan los residuos del agua, donde esta última puede volver a ser utilizado por la gente al finalizar su tratamiento en dicha planta.

5.5 Instalaciones Eléctricas

Es un conglomerado de circuitos eléctricos capaz de crear, transmitir, recibir y distribuir energía para un uso posterior. Esto quiere decir que, permite dotar de energía eléctrica a distintos tipos de recintos, habitados o no.

5.6 Instalaciones Agua Potable

Circuito de tuberías que permite dotar de agua potable a viviendas desde una planta de agua potable o ya sea desde una fuente natural directa de agua potable. Este circuito puede ser público o privado, pero ambas deben regirse según la norma que corresponda.

5.7 Importancia de la participación del Constructor Civil en proyectos de servicios públicos

El Constructor Civil desempeña roles de vital importancia en los servicios públicos, ya que es quien desarrolla, gestiona y controla la obra en ejecución, dirigiendo de forma organizada las distintas etapas que conlleve la obra. También es quien tiene los conocimientos sobre la calidad de los materiales que se utilizan en los proyectos, el estado y cuidado de los equipos.

Capítulo 6: METODOLOGÍA

Como primera parte se realizará una recopilación de información sobre la CONAF, con la finalidad de conocer antecedentes generales de esta institución y además conocer las condiciones en que se encuentra la Base de operaciones aéreas de Rodelillo, esta información es relevante para poder desarrollar este proyecto de la mejor manera. Para la recopilación de esta información, se realiza una entrevista al jefe del departamento de control de incendios forestales de la CONAF. Por otra parte, se materializa una visita a terreno para tener conocimiento y verificar la real situación de la anteriormente mencionada Base de operaciones aéreas.

En segundo lugar, se llevará a cabo un estudio y diferentes cálculos para desarrollar los distintos diseños de las instalaciones de agua potable, sanitarias y de electricidad. En los proyectos de instalaciones de agua potable, eléctricas y sanitarias se ejecutarán acorde a lo establecido en las siguientes normas:

- 1. Instalaciones de agua potable:
- Decreto 50. Reglamento de Instalaciones domiciliarias de Agua Potable y Alcantarillado. Ministerio de Vivienda y Urbanismo
- Nch 2485/2000. Instalaciones domiciliarias de agua potable Diseño, cálculo y requisitos de las redes interiores.
- 2. Instalaciones sanitarias:
- Reglamento de Instalaciones domiciliarias de Agua Potable y Alcantarillado.
- Decreto 236. Reglamento General de Alcantarillados Particulares Fosas sépticas, cámaras Filtrantes, cámaras de contacto, cámaras absorbentes y Letrinas domiciliarias. Ministerio de Salud.
- 3. Instalaciones eléctricas:
- Nch 4/2003. Electricidad. Instalaciones de consumo en baja tensión.
- Nch 2/84. Electricidad. Elaboración y presentación de proyectos.

Como tercera fase, se presenta un plan de trabajo, con metas semanales para poder llevar a cabo el desarrollo de las distintas instalaciones y así, terminar las obras en el plazo que determine el mandante.

Como cuarta y última etapa en el actual recinto donde se ubica la Base de Operaciones Aéreas carece de todo tipo de instalaciones. Para poder desarrollar el proyecto de una forma correcta se utilizará un conjunto de containers habitacionales, área común, camarines y baños.

Todas estas aprensiones fueron consideradas después de haber realizado una entrevista al jefe del departamento de control de incendios forestales, Fernando Parada y a su vez visitas a terreno correspondiente donde se podía identificar claramente dichas condiciones.

Imagen N°2: Base de operaciones Aéreas de Rodelillo. Habitaciones.

Fuente: Elaboración propia.

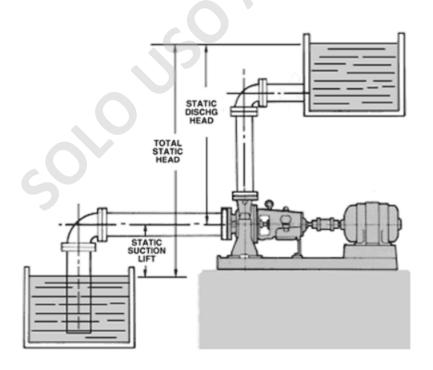
Imagen N°3: Base de Operaciones Aéreas de Rodelillo. Área común y baños.

Fuente: Elaboración propia.

6.1 Alcances y Limitaciones

El siguiente proyecto se formula al interior del Aeródromo de Rodelillo, Valparaíso, Chile, específicamente en la Base de brigadistas "Palma 1". Se busca proponer en este proyecto el mejoramiento de las actuales instalaciones de agua potable, alcantarillado y electricidad en la base de operaciones aéreas. Esto se realizará con un presupuesto y tiempo de ejecución determinado por el mandante, para demostrar compromiso y profesionalismo ante la ejecución del proyecto se implementarán multas diarias por días atrasados de finalización de obra.

Capítulo 7: INSTALACIONES ELÉCTRICAS, AGUA POTABLE Y SANITARIAS.


7.1 Instalaciones de Agua Potable

Tomando en consideración que en las cercanías no existe una matriz de agua potable, este proyecto contempla una red de agua potable particular, la cual se compone por estanques de agua potable, bomba de succión y bomba de distribución,

El sistema de agua potable se compone principalmente de un pozo del cual se elevará mediante el uso de una bomba. El agua será canalizada a estanques de acumulación para posteriormente ser impulsada a las dependencias de la base de operaciones aéreas de Rodelillo.

IMAGEN N°4: Bomba de succión.

•

Fuente: https://www.monografias.com

GASTO MAXIMO PROBABLE (QMP): "Concepto probabilístico mediante el cual se cuantifica el máximo caudal con el que deben diseñarse las instalaciones de agua potable de inmuebles que tienen una determinada característica de consumo". (DS N°50,2002, p.14).

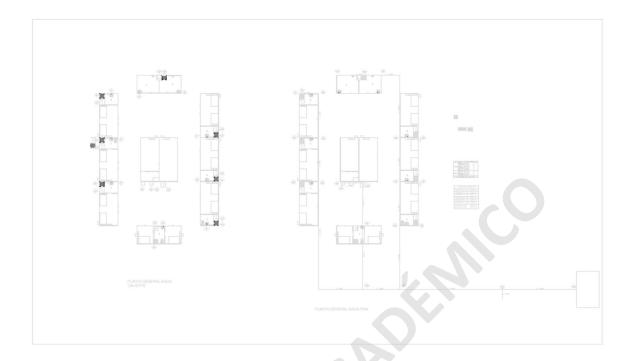
El QMP del proyecto es 157,51. El cual fue calculado según la siguiente cantidad de artefactos.

Tabla N°1: Calculo de Q instantáneo Agua fría, Agua Caliente y QMP.

Qinst AF	Qinst AC
326	186
72	80
100	12
80	64
12	30
30	
12	
20	

QMP AF	QMP AC	QMP
93,80	63,72	157,51

Fuente: Elaboración propia.


"El Polipropileno Grandon (PPR) es un polímero termoplástico de propileno de alta tecnología del cual se fabrican tuberías y conexiones. Entre sus propiedades mecánicas se destacan sus valores de rigidez, dureza y resistencia". (Ampersandchile, 2017).

Debido a sus componentes y costo, el material mencionado se utiliza generalmente para agua potable y caliente, sistemas de calefacción en las distintas obras a lo largo del país.

"Las tuberías HDPE El polietileno de alta densidad es un polímero de la familia de los polímeros olefínicos (como el polipropileno), o de los polietilenos. Es un polímero termoplástico conformado por unidades repetitivas de etileno". (Intelseg, s.f).

La instalación interior se realizará en tubería PPR y la matriz principal en HDPE.

IMAGEN N°5: Plano Agua Fría y Plano Agua Caliente.

Fuente: Elaboración propia.

7.2. Sistema de red de Alcantarillado

Debido a que en las cercanías del Aeródromo de Rodelillo no existe un Colector Público para aguas servidas es que se propondran instalaciones sanitarias las cuales consisten en un sistema de alcantarillado privado. La base de Operaciones Aéreas de Rodelillo contará con un sistema de alcantarillado, el cual contemplará cada uno de los procesos previamente establecidos en el DS 236/192" El cual tiene por nombre "Reglamento general de alcantarillados particulares, fosas sépticas, cámaras filtrantes, cámaras de contacto, cámaras absorbentes y letrinas sanitarias." El sistema de alcantarillado nombrado anteriormente será realizado por Profesionales del área de la Construcción.

La distribución desde los artefactos sanitarios hacia la cámara de decantación y purificación será regularizada por el D.S. MOP N°50 de 2002 "Reglamento de Instalaciones Domiciliarias de agua Potable y Alcantarillado" (RIDAA).

Se considerará como diámetro mínimo los criterios establecidos por el decreto nombrado anteriormente para el diseño de alcantarillado privado:

Los siguientes diámetros pertenecen a las tuberías de descargas los cuales serán indicados en la Tabla $N^{\circ}2$

Tabla N°2: Diámetro de descarga por artefacto.

Artefacto	Sigla	DIÁMETRO MÍNIMO DE DESCARGA (mm)
Baño lluvia múltiple	Bollm	50
Inodoro corriente	Wc	100
Urinario	Ur	38
Lavatorio	Lo	38
Lavaplatos con o sin Lavavajillas	Lp	50
Lavadero con máquinas lavadoras	Mlva	50

Fuente: Elaboración propia.

7.2.1. Condiciones básicas y cálculos de las instalaciones sanitarias del Sistema de Alcantarillado privado en la Base de Operaciones Aéreas en el Aeródromo de Rodelillo.

El cálculo de la siguiente tabla permitirá determinar mediante los distintos tipos de clases y artefactos las Unidades Equivalentes Hidráulicas (UEH) correspondientes al diámetro mínimo del alcantarillado principal.

Tabla N°3: Unidades de equivalencia hidráulica.

			UNIDADES DE EQUI	VALENCIA HIDRAU	LICA			
	DIAMETRO DESCARGAR SEGUN ARTEFACTO							
Artefacto	Sigla	N° Artef		Clase		UEH	Total UEH	Diámetro
Baño Iluvia	Bollm		8		2	6	48	50
Inodoro cor	Wc		10		2	5	50	100
Urinario	Ur		2		2	1	2	38
Lavatorio	Lo		9		2	2	18	38
Lp con o sin	Lp		1		2	3	3	50
Lavadero co	Mlva		2		2	6	12	75
							133	

Fuente: Elaboración propia.

- Clase 1 se aplicará a artefactos de viviendas unifamiliares, departamentos, privados de hoteles, privados de oficinas.
- Clase 2 se aplicará en servicios comunes de oficinas, fábricas y residenciales.
- Clase 3 se aplicará en servicios de escuelas, hoteles, edificios públicos, teatros, aeropuertos, estadios, terminales de trenes y buses, restaurantes.

Para contextualizar la Tabla N°3 se dará a conocer la definición de tubería principal según D.S. MOP N°50 de 2002 "Reglamento de Instalaciones Domiciliarias de agua Potable y Alcantarillado" la cual establece que "UNIDAD DE EQUIVALENCIA HIDRÁULICA (UEH): Concepto probabilístico, en términos del cual se cuantifica la contribución de gasto al sistema de tuberías de la instalación domiciliaria de alcantarillado, de cada uno de los artefactos instalados, expresado en una determinada escala."

Al realizar la sumatoria de la totalidad de UEH se obtiene como resultado 133 Unidades Equivalentes Hidráulicas (UEH). Según este valor es que se define el diámetro de descarga de la tubería principal el cual corresponde a 100mm. Lo descrito se puede visualizar y verificar en la tabla que se dará a conocer a continuación.

Tabla N°4: Capacidad de tubería de descarga.

Diámetro de la descarga (mm) Máximo de EUH				
50		18		
75		48		
100		240		
125		540		
150		960		
200		2240		
250		3000		
300		4200		

Fuente: "Reglamento de Instalaciones Domiciliarias de agua Potable y Alcantarillado" (RIDAA).

Para efectos de este proyecto, se considera pertinente dar a conocer la siguiente tabla correspondiente a la capacidad de tuberías horizontales respecto de las Unidades de Equivalencia Hidráulicas (UEH).

Tabla N°5: Capacidad de tuberías horizontales.

DIAMETRO DE LA TURERIA (mm)	Máximo de unidades de equivalencias hidráulicas instaladas					
DIAMETRO DE LA TUBERIA (mm)	Tuberías Principales					
 75	i = 1%	i = 2%	i = 3%	i = 4%		
73	90	125	150	180		
100	450	630	780	900		
125	850	1200	1430	1700		
150	1350	1900	2300	2700		
175	2100	2900	3500	4150		
200	2800	3900	4750	5600		
250	4900	6800	8300	9800		
300	8000	11200	13600	16800		
	Tuberías Se	cundarias				
	i = 1%	i = 2%	i = 3%	i = 4%		
32	1	2	3	3		
38	١.,					
30	3	5	6	7		
50	6	5 21	6 23	7 26		
50	6	21	23	26		
50 75	6 36	21 42	23 47	26 50		
50 75 100	6 36 180	21 42 216	23 47 230	26 50 250		
50 75 100 125	6 36 180 400	21 42 216 480	23 47 230 520	26 50 250 560		
50 75 100 125 150	6 36 180 400 600	21 42 216 480 790	23 47 230 520 870	26 50 250 560 940		
50 75 100 125 150 175	6 36 180 400 600 1130	21 42 216 480 790 1350	23 47 230 520 870 1470	26 50 250 560 940 1580		

Fuente: "Reglamento de Instalaciones Domiciliarias de agua Potable y Alcantarillado" (RIDAA).

Para contextualizar la Tabla N°4 se presenta la definición de tubería principal según D.S. MOP N°50 de 2002 "Reglamento de Instalaciones Domiciliarias de agua Potable y Alcantarillado" la cual establece que "TUBERÍA PRINCIPAL: Es la que recibe las ramificaciones, comienza en la tubería de ventilación principal y termina en la unión domiciliaria."

Cabe mencionar que para la ejecución del alcantarillado de este proyecto se deben considerar 10 cámaras de inspección, 1 cámara desengrasante, 1 Fosa Séptica y un Pozo absorbente. Las cámaras mencionadas presentan valores de altura diferentes, esto permite que el flujo de

materia orgánica sea el correcto, logrando así que no se generen obstrucciones en su trayecto. Lo descrito anteriormente se encuentra detallado en la Tabla N°6.

Tabla N°6: Tabla de alturas de cámaras de inspección y pendientes.

T inicio	T Fin	Cot.Rad Inicio	P%	Largo m	Cot Rad CI	Cot Terr	H CI	Notas
Pz absorvente	Fs	98,22	3,0	0,98	98,24	100,0	1,8	Fs
Fs	CI1	98,24	3,0	5,4	98,4	100,0	1,6	H C1
CI1	CI2	98,40	4,0	2,5	98,50	100,00	1,5	H C2
CI2	CI3	98,50	3,0	6	98,68	100,00	1,32	н сз
CI3	CI4	98,68	3,0	6	98,86	100,00	1,14	H C4
CI4	CI5	98,86	3,0	8,6	99,12	100,00	0,88	H C5
CI5	CI6	99,12	3,0	9,28	99,30	100,00	0,70	H C6
CI6	CAM DES	99,21	3,0	5,52	99,38	100,00	0,62	CAM DES
CI1	CI7	98,40	3,0	17	98,91	100,00	1,09	H C7
CI7	CI8	98,91	3,0	7,9	99,15	100,00	0,85	CI8
CI8	CI9	99,15	3,0	6	99,33	100,00	0,67	CI9
CI9	CI10	99,12	3,0	6	99,30	100,00	0,70	CI10

Fuente: Elaboración propia.

Las siguientes tablas dan a conocer los volúmenes mínimos que deben tener la Fosa Séptica y el Pozo Absorbente. Estos están determinados por la cantidad de habitantes que albergará esta base de operaciones aéreas en su época de mayor apogeo. Cabe la posibilidad que los volúmenes a utilizar no sean los mismos que se encuentren en el mercado, es por esto que si se estima necesario se deberán realizar los aumentos del volumen que se determinó.

Tabla N°7: Diámetro Fosa decantación y Pozo Absorbente.

Fosa de decantación			
Número de habitantes		25	Hab
Alto =	2	МІ	
Largo =	1.95	МІ	
Ancho =	1	МІ	
Volumen útil =	3.12	M3	
H de entrada =	0.4	МІ	_

Sistemas de drenaje	Pozo absorbente	
Regimientos y cuarteles (agregar otros consumos)	200	Lts/hombre/dia
Número de habitantes	25	Hab
Dotación	5000	Lts/dia
Valor prueba normalizada	10	Min
M2 de absorción de terreno	65	lts*m2/dia
Pozo absorbente	76.92	M3
Datos del pozo		
Radio Superior	2	МІ
Radio Inferior	2.5	МІ
Altura Pozo	2.8	МІ
Altura Total Pozo	4.3	МІ
Area Total del Pozo	39.6	M3
Número de Pozos	2	Und
Coeficiente de ajuste	1.94	Coincidencia
		0
0		0

Fuente: Elaboración propia.

7.2.2 Sistema de evacuación de Agua Residuales.

Se diseña un sistema de evacuación de aguas residuales que permitirá agrupar y guiar los diferentes fluidos y materias orgánicas que se arrojen a dicho sistema, desde su origen, hasta un colector público o privado.

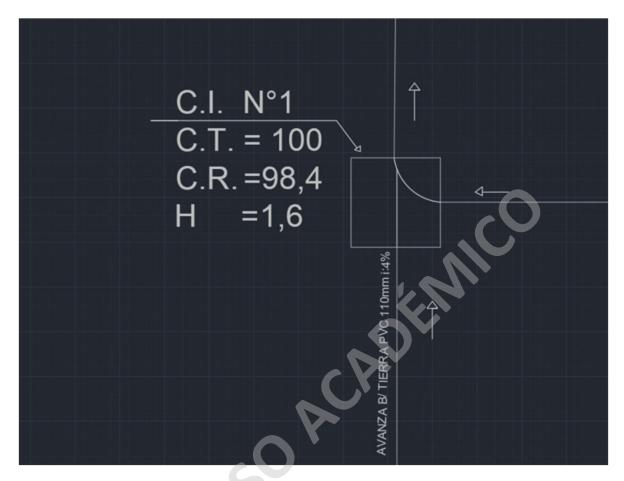
Como primera etapa se debe considerar que en Chile se utilizan dos tipos de cámaras de inspección, la cámara de inspección albañilería estucada, afinadas con cemento, con marco y tapas de hormigón de dimensiones 60cm x 60cm, y, por otro lado, se tienen las cámaras de inspección de polietileno de alta densidad, que cuentan con tres entradas y una salida y tapa plástica apernada. Esta alternativa es más económica y rápida de instalar ya que no se requiere de una mano de obra especializada.

Con respecto a las cámaras de inspección se considera pertinente referirse a:

Artículo 92º: "La confluencia de los ramales y cambios de dirección o pendiente de los ramales en la planta inferior, se efectuará mediante cámaras de inspección. En casos de

tuberías que se instalen a la vista, podrá aceptarse que las cámaras sean reemplazadas por registros adecuados que aseguren total impermeabilidad a los gases y permitan un fácil acceso a los ramales. El ángulo suplementario que formen los ejes de los ramales será el más pequeño posible y en ningún caso mayor de 120°, salvo caída. Toda excepción a esta disposición deberá ser adecuadamente justificada.

La distancia entre cámaras interiores podrá ser, como máximo de 30 m., para tuberías de 100 mm., de diámetro y hasta 50 m., para diámetros de 150 mm., o más. Las cámaras de inspección domiciliarias se ubicarán en patios o sitios completamente ventilados. Si esto no fuese posible, se aceptará ubicarlas en el interior de la edificación, en cuyo caso se adoptarán dispositivos especiales, como doble tapa a otros, que impidan la salida de los gases. No se aceptará instalar cámaras muebles o colgantes, las que se reemplazarán por registros". (DS N°50, 2002, p. 34-35).


Para fines de este proyecto se utilizará la cámara de inspección de polietileno prefabricada, el modelo es INSPEC0500 de Bioplastic.

BIOPLASTIC CÁMARA DE INSPECCIÓN INSPEC0500 NUEVA CÁMARA DE INSPECCIÓN Características técnicas Volumen: 29,6 L Diámetro: 480 mm · Altura: 324 mm Punto de acceso de las redes de alcantarillado con el objetivo de verificar el estado de las tuberías v HDPE efectuar limpieza cuando se POLIETILENO LINEAL DE ALTA DENSIDAD encuentran obstruidas. MÁS RESISTENTE Permiten el cambio de MÁS LIGERA dirección en el sistema de MÁS DURADERA alcantarillado, adicionalmente se puede emplear para muestreo de Primera cámara de inspección inyectada en Chile las aquas del sistema de alcantarillado.

Imagen N ° 6: Cámara de inspección prefabricada de polietileno

Fuente: https://www.bioplastic.cl/

Imagen N°7: Cámara de Inspección. Proyecto Base de operaciones Aéreas.

Fuente: Elaboración Propia.

Con respecto a la ventilación de la red de alcantarillado interior, se considerará un artículo del DS N°50, 2002:

Artículo 97º: "Toda instalación domiciliaria de alcantarillado deberá contar con un sistema de ventilación, que cumpla con las siguientes condiciones:

- a. Se establecerá, a lo menos, una tubería de ventilación principal, de diámetro nominal no inferior a 75 mm., por cada empalme con la red pública, la que deberá quedar en el punto más alto de la red de alcantarillado domiciliario.
- b. Se deberán ventilar los ramales de inodoros (WC) que recorran, en planta, más de 3 metros antes de llegar a una cámara de inspección o empalme con ventilación y cualquier otro ramal que recorra más de 7 m. con excepción de los ramales de pileta, en que se podrá aceptar hasta 15 metros.

c. Deberán ventilarse los ramales de inodoros que recorran en planta menos de 3 metros antes de llegar a un empalme con ventilación y que reciban descarga de otro artefacto, lo que no será necesario cuando la llegada se haga a una cámara de inspección". (DS N° 50, 2002, p. 37).

Para el caso de lavaplatos con o sin maquina lavavajillas y lavaderos con o sin maquina lavadora entre otros se utilizaran cámaras desgrasadora, su función será interceptar grasas y jabones de los artefactos mencionados anteriormente, por medio de la sedimentación de los sólidos, los cuales se depositan en el fondo de la cámara, y por flotación el material graso o jabonoso queda en la superficie, este procedimiento es vital para la no contaminación del terreno donde será emplazado el pozo absorbente o dren de infiltración.

Estas cámaras se pueden realizar de albañilería estucada e impermeabilizada, véase en Imagen N°8 y de polietileno.

Para el diseño se considerarán los siguientes parámetros:

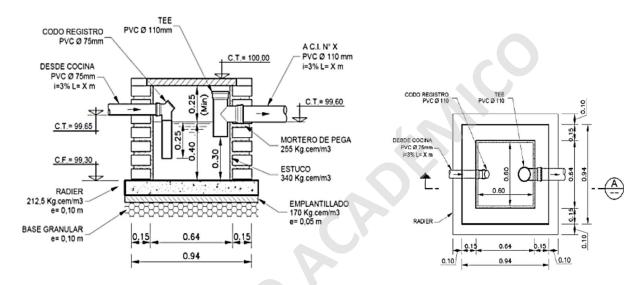
Según la SEREMI de Salud Región Metropolitana (2014) el volumen útil mínimo del dispositivo a considerar para una vivienda, con una retención de 30 minutos será de 144 lts.

En la parte superior de la cámara se considerará una tapa de registro se sección cuadrada dimensiones de 0.60 para las cámaras de albañilería y de 0.50 m., de diámetro para cámaras plásticas.

La profundidad útil mínima de las aguas será de 0.40 m., y la cámara de aire será de 0.25 m, sirviendo así para la acumulación de la costra de grasas y/o espumas de jabón.

La cota de la tubería de salida se proyectará a 0.05., m más baja que la cota de entrada del dispositivo.

La tubería de entrada a la cámara se conectará a un codo de registro y la tubería bajará 0.25 m respecto del nivel de agua, y la tubería de salida captará las aguas a 0.30 m., del fondo de la cámara.


Una vez cada 2 meses se procederá a retirar los sedimentos, grasas o jabones.

Por otra parte, para una cámara desgrasadora de polietileno, se debe realizar una excavación que excederá los 20cm, más que el diámetro y altura de la cámara, en su base debe llevar una

capa de arena y luego nivelar la cámara. Por último, se deberá rellenar en sus costados con arena y luego hidro compactar.

Para este diseño se utilizará una cámara desgrasadora de polietileno por su costo y rápida puesta en obra.

Imagen N°8: Cámara desgrasadora de albañilería.

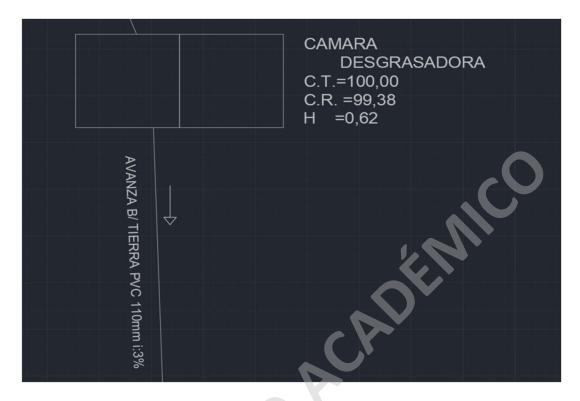

Fuente: SEREMI de Salud, 2014.

Imagen N°9: Cámara desgrasadora Prefrabricada de Polietileno.

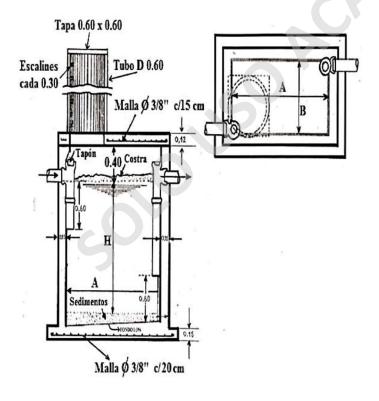
Fuente: https://www.bioplastic.cl

Imagen N°10: Cámara Desgrasadora. Proyecto Base de operaciones Aéreas.

Fuente: Elaboración Propia.

Para terminar con el sistema de evacuación de aguas residuales se debe considerar una fosa séptica junto con un pozo absorbente. La Fosa séptica tiene como funciones el separar la mayor cantidad de solidos que componen las aguas servidas, licuar y deshacer los sólidos presentes en la fosa séptica y conservar los materiales solidos que no se logren descomponer, estas pueden ser:

Art. 23. "Toda fosa séptica deberá ser construida de albañilería de piedra o ladrillo sobre mortero de cemento portland, de concreto armado o de fierro fundido". (DS N° 236/26, 1926, p.7).


Art. 24. "Toda fosa séptica deberá estucarse interiormente con mortero de cemento portland de dosificación mínima de una parte de cemento por tres de arena, afinado con cemento puro antes de su fragua inicial". (DS N° 236/26, 1926, p.7).

Lo mencionado anteriormente puede ser observado en la imagen N°11

Por otra parte, también existen Fosa sépticas de polietileno, que presentan un costo económico mucho menor y una rápida instalación, lo cual hace que sea la elección primordial para este proyecto. Esta fosa debe ir sobre una losa de hormigón armado reposada en 10 cm de arena. Luego se rellena con arena en su exterior, para finalizar se compacta hidráulicamente.

El pozo absorbente será el encargado de dirigir el agua residual que va cayendo desde la fosa séptica hacia el subsuelo inferior, este diseño consiste en una excavación de 2,0 m a 2,5m de diámetro con una profundidad que varía entre 6 a 12 metros, este pozo de forma cónica, va rellenado hasta ¾ de su alto con piedra bolón de 20 cm de diámetro como mínimo, todo pozo debe tener una cubierta de hormigón armado de 20 cm con una tapa de 60x60 cm q se conectara a la tubería de ventilación de 10 mm para la eliminación de gases.

Imagen N°11: Fosa séptica de albañilería.

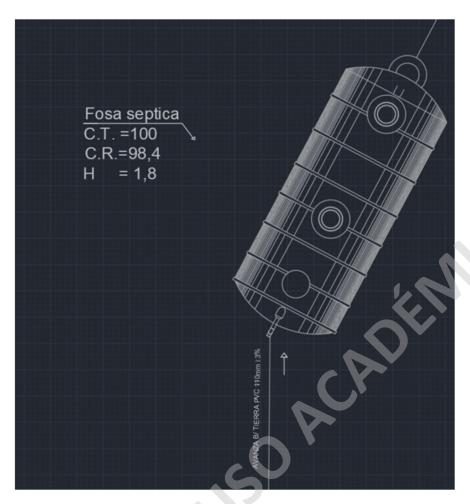

Fuente: SEREMI de Salud. 2014.

Imagen N°12: Fosa séptica Prefabricada de Polietileno Referencial.

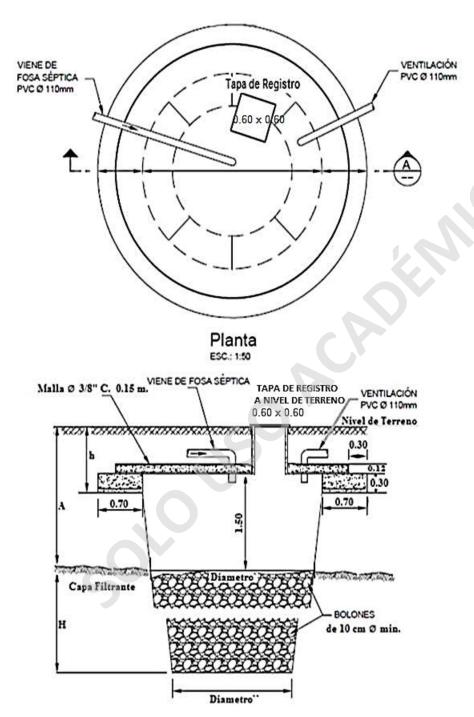

Fuente: https://www.bioplastic.cl

Imagen N°13: Fosa séptica. Proyecto Base de operaciones Aéreas.

Fuente: Elaboración Propia.

Imagen N°14: Pozo Absorbente.

Fuente: SEREMI de Salud,2014.

7.3 Instalaciones Eléctricas

Las instalaciones por ejecutar tienen como finalidad dotar de energía eléctrica al recinto compuesto por 8 habitaciones, espacios comunes (sala de reunión, comedor y áreas exteriores).

Las instalaciones cubren todos los requerimientos de energía:

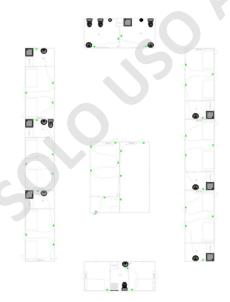
- Alimentación de equipos de impulsión de agua.
- Circuitos de alumbrado para los distintos recintos.
- Circuitos de enchufes de 10A y 16A.

Las instalaciones eléctricas de este proyecto se resumen en el siguiente cuadro de cargas. Tabla N°8: Tabla de Cargas.

CUADRO DE CARGAS											protec	ciones		canalizacion	n
CIRCUITO	100	200	500	800	1500	2000	3000	T centro	P KW	Corriente	Diferencial	Disyuntor	Cond	Seccion m	m Ducto
1	2			1				3	1000	r	2*25	16A	thwn	2,5	32MM
2	2			1				3	1000	r	2*25	16A	thwn	2,5	32MM
3	2			1				3	1000	r	2*25	16A	thwn	2,5	32MM
4	1					1		2	2100	r	2*25	10A	thwn	2,5	32MM
5	1					1		2	2100	r	2*25	10A	thwn	2,5	32MM
6	1					1		2	2100	ſ	2*25	10A	thwn	2,5	32MM
7	2			1				3	1000	r	2*25	16A	thwn	2,5	32MM
8	2			1				3	1000	r	2*25	16A	thwn	2,5	32MM
9	2			1				3	1000	r	2*25	16A	thwn	2,5	32MM
10	1					1		2	2100	r	2*25	10A	thwn	2,5	32MM
11	1					1		2	2100	r	2*25	10A	thwn	2,5	32MM
12	1					1		2	2100	ſ	2*25	10A	thwn	2,5	32MM
13	2			1				3	1000	ſ	2*25	16A	thwn	2,5	32MM
14	2			1				3	1000	ſ	2*25	16A	thwn	2,5	32MM
15	1					1		2	2100	١	2*25	10A	thwn	2,5	32MM
16	2					1		3	2200	١	2*25	10A	thwn	2,5	32MM
17	3			2				5	1900	r	2*25	16A	thwn	2,5	32MM
18		1			2	1		4	5200	r	2*40	32A	thwn	2,5	32MM
19	9							9	900	r	2*25	6A	thwn	1,5	32MM
20	9							9	900	r	2*25	6A	thwn	1,5	32MM
21	4							4	400	r	2*25	6A	thwn	1,5	32MM
22	5							5	500	r	2*25	6A	thwn	1,5	32MM
23	5							5	500	r	2*25	6A	thwn	1,5	32MM
24			2				1	3	4000	r	2*25	20A	thwn	2,5	32MM
25			4					4	2000	r	2*25	10A	thwn	2,5	32MM

Fuente: Elaboración Propia.

El proyecto eléctrico será encargado a una empresa contratista, la cual en conocimiento de los planos y especificaciones técnicas deberá estar en condiciones de entregar el trabajo terminado en el plazo requerido, esto se puede observar en la tabla N°9: Plan de trabajo.


El proyecto se realizará con sistema de instalaciones eléctricas convencional puesto que, al ser una propuesta perteneciente a una institución del gobierno, cuenta con un presupuesto limitado, por lo tanto, no se considerarán paneles solares, ya que el costo del presupuesto se elevaría de manera considerable.

Los tableros que se instalarán serán embutidos y se componen de:

- Disyuntores y diferenciales (capacidades dependiendo del recinto).
- Barras de conexión.
- Los circuitos al interior del tablero deberán ir rotulados al igual que el disyuntor general y los diferenciales, además del diagrama unilineal.

La ejecución de los trabajos deberá ser desarrollada y dirigida por un jefe de proyecto instalador electricista de clase B como mínimo. Según el Decreto N°92 en el Artículo N°6 (2002), las instalaciones de tipo B "son las de baja tensión con 500kw máximo de potencia instalada".

Imagen N°15: Plano de enchufes.

Fuente: Elaboración Propia.

Imagen N°16: Plano de Iluminación.

Fuente: Elaboración Propia.

7.4 Especificaciones técnicas.

7.4.1.1. Trabajos.

Alcantarillado de Aguas Servidas: Movimiento de tierras, instalaciones de tuberías con sus accesorios, fijaciones y pasadas.

Agua potable: Movimiento de tierras, instalaciones de tuberías con sus accesorios y válvulas, fijaciones, calados y pasadas.

Limpieza y desinfección de los sistemas.

Identificación de tuberías a la vista.

7.4.1.2 Trabajos Excluidos.

Instalación de artefactos y accesorios.

7.4.1.3 Reglamentos.

Los trabajos a ejecutar deberán estar de acuerdo a lo establecido por:

Reglamento de instalaciones domiciliarias de agua potable y alcantarillado aprobado por D.MOP N°50 del 25/01/2002. En vigencia desde 28 de Mayo 2003.

7.4.1.4 Materiales.

Los materiales que se empleen deberán ser de las marcas que se indican en planos y a falta de la estipulación expresa, deberá ser de la mejor calidad y procedencia de su especie. Todo material deberá tener marca impresa de fábrica la cual deberá quedar a la vista al ser instalada.

7.4.1.5 Certificación de Calidad.

Todos los elementos, materiales y equipos que se instalen con motivo de construir la red de Agua potable Fría y Caliente, Alcantarillado de Aguas Servidas, Alcantarillado de Aguas Lluvia, redes de incendio del Edificio y contemplado en este proyecto, deberán contar con sus respectivos Certificados de calidad y acreditación en los Organismos Fiscalizadores del Sector.

7.4.2 Especificaciones Alcantarillado de Aguas Servidas.

7.4.2.1 Suministros de Materiales y Equipos.

Tubera y accesorios:

 Todas las redes indicadas expresamente en el proyecto se ejecutarán en tuberías y piezas Policloruro de Vinilo, fabricadas bajo las consideraciones establecidas en la NCH 1635. El sistema de conexión a emplear será el de unión ANGER con anillo de goma.

- Protecciones: Aquella tubería bajo tierra deberá apoyarse en una cama de arena de 0,10 metros de espesor y luego efectuar la protección lateral y superior mediante el mismo material.
- PVC tipo Colector: Todas las tuberías de PVC de diámetro igual o superior a 110mm serán del tipo Colector Clase 1, marcas certificadas Vinilit, Tigre, etc

7.4.2.2 Piezas de PVC.

Los cambios de dirección, bifurcaciones, registros, etc. se ejecutarán con piezas especiales de PVC, que deberán cumplir con todas las exigencias similares a las tuberías (PVC Sanitario Blanco Unión Goma), así como también sus técnicas de montaje y unión.

La altura será definida en planos de detalle de Arquitectura, así como también la orientación de la tapa.

7.4.2.3 Soporte de tuberías.

Suministrar abrazaderas adecuadas para soportar las cargas requeridas. Donde sea necesario, los soportes deberán estar diseñados para permitir el movimiento longitudinal debido a la expansión y contracción.

7.4.2.4 Cámaras

Inspección: De acuerdo con lo indicado en el RIDAA Artículo 91° y conjuntamente al Artículo 104° letra f. Las cotas de terreno, radieres y alturas definitivas de cada cámara se encuentran en planos de proyecto, esto se puede apreciar en la Imagen N°7: Cámara de Inspección. (Proyecto Base de operaciones Aéreas).

. Si las cámaras tienen una altura superior a 1.00 mt, deberán contar obligatoriamente con escalines de acero liso o con resaltes de diámetro ¾" galvanizados por inmersión en caliente.

7.4.3 Especificaciones Agua Potable

7.4.3.1 Estanques de Agua Potable

El recinto cuenta con estanques acumuladores de agua fría y un sistema de presurización. Los estanques están separados de la estructura del recinto, son dos estanques de 2.500 m3 cada uno.

El llenado de los estanques se realizará desde una cañería HPDE diámetro 50 mm, proveniente desde el pozo.

7.4.3.2 Suministros de materiales y equipos.

- Tubería HDPE 50mm: Matriz horizontal de agua fría desde la sala de bombas hacia la de sala de extracción de agua potable.
- Polifusión Beta: La totalidad de las tuberías, matrices y distribuciones desde la sala de bombas hacia el recinto de containers, según proyecto se ejecutará la instalación en tuberías y Fittings de polifusión PN 16 BETA, certificados, para agua fría y caliente.
- Llaves de Paso: Las llaves de paso serán marca de igual procedencia que las tuberías POLIFUSION, o la que determine arquitectura.
- Soporte de tuberías: Abrazadera. Riel, abrazaderas y pernos de los diámetros requeridos por la tubería

7.4.4 Especificaciones instalaciones Eléctricas

7.4.4.1 Normas Aplicadas.

Todos los trabajos y materiales utilizados deberán satisfacer las disposiciones de las siguientes normas:

- NCh. Elec 2/84: Elaboración y Presentación de Proyectos.
- NCh. Eec 4/2003: Instalaciones de Consumo en Baja Tensión.
- NCh. Elec 934/935 Normas de Prevencion de Incendios.

7.4.4.2 Aclaración

Las presentes especificaciones no reemplazan en modo alguno, ni completa ni parcialmente, ningún código, norma o estándar. El instalador deberá conocer todos los códigos, normas y estándares nacionales e internacionales a los que pudiera estar sometido el presente proyecto.

7.4.4.3 Profesional a cargo

El instalador será en todo momento responsable del personal en obra y las prácticas de instalación aplicadas, así como de observar y cumplir todas las normas Laborales, de Higiene y Seguridad aplicables a este tipo de obras.

7.4.4.4 Materiales y Equipos

Serán de cargo del contratista eléctrico el suministro de todos los equipos, materiales y accesorios que sean necesarios, para el correcto y reglamentario funcionamiento de las Instalaciones, salvo indicación contraria, cuando sea suministrado por otra fuente. El contratista deberá suministrar todos los elementos que no se encuentren mencionados en los planos o especificaciones y que sean necesarios en remates y/o terminaciones.

Todos los materiales deben ser nuevos y de la calidad especificada; cuando proceda deberán cumplir con las condiciones de certificación indicados en la reglamentación para certificación de productos eléctricos, conforme a la normativa vigente.

Será responsabilidad del contratista eléctrico de adecuado uso y calidad de los materiales que deba suministrar, debiendo tener especial cuidado en el embalaje de los elementos eléctricos para evitar golpes y deterioros. No se aceptará el uso de material deteriorado.

Los materiales eléctricos deberán mostrar claramente el nombre del fabricante, la certificación de servicios eléctricos y su capacidad cuando corresponda.

No se aceptará el uso de roscalatas ni tornillos con hilos filosos ni puntas agudas que puedan dañar eventualmente los conductores u otros elementos. Se deben usar los tornillos y pernos adecuados (todos con punta roma) para la fijación y soporte de enchufes, interruptores, tapas ciegas, etc.

7.4.4.5 Tableros en Gabinetes

Sobre los tableros eléctricos no deberá estar instalada ninguna tubería de agua potable, del sistema de agua potable, descargas de agua, con la finalidad de evitar filtraciones que dañen y afecten seriamente el funcionamiento de los circuitos eléctricos.

Los materiales por utilizar en su construcción deberán ser incombustibles o auto extinguentes, no higroscópicos, resistentes a la corrosión.

Las dimensiones de los gabinetes serán suficientemente holgadas para permitir un fácil montaje y cableado de sus componentes, deberá considerar capacidad de reserva del 25% por sobre los elementos proyectados, previo a su construcción, se deberá verificar en terreno las dimensiones reales que se dispone para su instalación y montaje.

Se deberá disponer el espacio interior respectivo para el ingreso y paso de los cables alimentadores y circuitos, mediante canales portacables verticales con tapa removible y que no interfiera con los componentes del tablero.

7.4.4.6 Cableado Interno

Todo el cableado será absolutamente ejecutado en fábrica utilizando cable THWN para los circuitos, de sección acorde con la capacidad de los disyuntores respectivos. Los cables serán marcados para facilitar su mantenimiento.

Para la conexión de los circuitos se dispondrán de bornes apilables para montar sobre riel DIN del tipo tornillo – tornillo, identificados mediante números correlativos de acuerdo con la identificación de los circuitos en el proyecto.

7.5 Plan de Trabajo

La ejecución de las partidas involucradas en las instalaciones sanitarias y eléctricas se desarrollarán según el siguiente plan de trabajo:

Tabla N°9. Plan de Trabajo Semanal.

PROGRAMA EXCAVACIÓN		Semana 1				Semana 2								
		Mar	Mie	Jue	Vie	Sab	Dom	Lun	Mar	Mie	Jue	Vie	Sab	Dom
Nivel y Trazado														
Excavación tuberías Alcantarillado														
Excavación Cámaras, Fosa, Pozo														
Excavación tuberías Agua Potable														
Excavación tuberías Eléctricas														
PROGRAMA INSTALACIONES BÁSICAS														
Instalaciones Alcantarillado														
Instalaciones Agua Potable														
Instalaciones Eléctricas														
			S	eman	a 3					S	eman	a 4	•	
PROGRAMA EXCAVACION	Lun	Mar	Mie	Jue	Vie	Sab	Dom	Lun	Mar	Mie	Jue	Vie	Sab	Dom
Nivel y Trazado														
Excavación tuberías Alcantarillado														
Excavación Cámaras, Fosa, Pozo							17							
Excavación tuberías Agua Potable														
Excavación tuberías Eléctricas														
PROGRAMA INSTALACIONES BÁSICAS					7									
Instalaciones Alcantarillado					+									
Instalaciones Agua Potable											1			
Instalaciones Eléctricas					 						1			
Ilistalaciones Electricas				emar	12.5			1			emar	12.6		
PROGRAMA EXCAVACIÓN	Lur	Ma	_		10. 0	Sab	Dom	Lun	Mar	_			Sab	Dom
Nivel y Trazado														
Excavación tuberías Alcantarillado														
Excavación Cámaras, Fosa, Pozo														
Excavación tuberías Agua Potable														
Excavación tuberías Eléctricas														
PROGRAMA INSTALACIONES BÁSICAS	; 													
Instalaciones Alcantarillado														
Instalaciones Agua Potable														
Instalaciones Eléctricas														
,		.!		Semai	na 7		<u> </u>	1	1	5	ema	na 8	·	!
PROGRAMA EXCAVACION				Jue Vie Sab Dor		n Lui	n Ma					Dom		
Nivel y Trazado		1	1		1		2 20.		1	1		110	-	
Excavación tuberías Alcantarillado					+		_	_	+					
Excavación Cámaras, Fosa, Pozo		1			+					+	+	+		
Excavación tuberías Agua Potable					+	_	_	_	+		-	+		
Excavación tuberías Agua Potable Excavación tuberías Eléctricas		1	+	-				+	-	+	+	+		
			+	+					+	-				
PROGRAMA INSTALACIONES BÁSICAS														
Instalaciones Alcantarillado														
Instalaciones Agua Potable														
Instalaciones Eléctricas														

Fuente: Elaboración Propia.

7.6 Presupuesto

El costo de materiales y mano de obra es el que se detalla a continuación:

Tabla N°10: Tabla de Presupuesto.

DESCRIPCIÓN	UNIDAD	CANTIDAD	PRECIO UNITARIO	TOTAL
Instalación Sanitaria				
Alcantarillado Exterior				
Excavaciones	m3	145,02	\$18.650	\$2.704.543
Tubería PVC 110	ml	96	\$2.365	\$227.040
Tubería PVC 75	ml	10	\$1.915	\$19.150
Tubería PVC 50	ml	10	\$1.165	\$11.650
Tubería PVC 40	ml	10	\$1.263	\$12.630
Tee reductora PVC 100 >40 mm.	uni	15	\$2.990	\$44.850
Tee reductora PVC 100 >50 mm.	uni	15	\$2.890	\$43.350
Tee reductora PVC100 > 75 mm.	uni	12	\$3.290	\$39.480
Cámara Inspección	uni	10	\$77.251	\$772.510
Provisión e Instalación Cámara Desgrasadora	uni	1	\$115.990	\$115.990
Provisión e Instalación Fosa séptica	uni	1	\$721.301	\$721.301
Elevador de registro 500mm	uni	5	\$30.766	\$153.830
Elevador de reigistro 800mm	uni	5	\$41.737	\$208.685
Arena	m3	35	\$22.000	\$770.000
Bolón	m3	40	\$25.000	\$1.000.000
Gravilla	m3	20	\$24.000	\$480.000
DESCRIPCIÓN	UNIDAD	CANTIDAD	PRECIO UNITARIO	TOTAL
Istalacion Agua Potable				
Provisión e Instalación Bomba Impulsión	uni	1	\$61.068	\$61.068
Provisión e Instalación Bomba Impulsión	uni	1	\$138.584	\$138.584
Estanque hidroneumático	uni	1	\$282.546	\$282.546
Estanque Acumulador	uni	1	\$450.202	\$450.202
Tubería HDPE 63 mm	ml	5,25	\$4.833	\$25.373
PPR 13 MM	ml	27,77	\$1.330	\$36.937
PPR 19 MM	ml	65,74	\$1.797	\$118.136
PPR 25 MM	ml	45,48	\$2.330	\$105.958
PPR 38 MM	ml	67,725	\$3.596	\$243.539
PPR 50 MM	ml	15,75	\$5.187	\$81.695
Codo 90 PPR 13 MM	uni	2	\$104	\$208
Codo 90 PPR 19 MM	uni	3	\$205	\$615
Codo 90 PPR 25 MM	uni	3	\$370	\$1.110
Codo 90 PPR 38 MM	uni	3	\$649	\$1.947
Codo 90 PPR 50 MM	uni	2 2	\$1.207	\$2.414
Tee reductora 50 > 38	uni		\$1.863	\$3.726
Tee reductora 38 > 25	uni	4	\$734	\$2.936
Tee reductora 25 > 19	uni	6	\$560	\$3.360
Tee reductora 19 > 13	uni	10	\$170	\$1.700
Tee reductora 38 > 19	uni	4	\$220	\$880
Tee reductora 38 > 13	uni	2	\$180	\$360
Llave jardín	uni	1	\$4.490	\$4.490
Llave de paso	uni	4	\$7.919	\$31.676

DESCRIPCIÓN	UNIDAD	CANTIDAD	PRECIO UNITARIO	TOTAL
Instalaciones Eléctricas				
Centro Alumbrado	uni	34	\$11.490	\$390.660
Centro de enchufes	uni	47	\$444	\$20.868
Caja de derivación embutida para centro de luz	uni	34	\$444	\$15.096
Enchufes	uni	47	\$2.690	\$126.430
Caja de derivación	uni	50	\$444	\$22.200
Tablero Eléctrico	uni	6	\$18.990	\$113.940
Diferencial 2*25	uni	6	\$9.641	\$57.846
Diferencial 2*40	uni	1	\$11.608	\$11.608
Disyuntor 6A	uni	5	\$3.695	\$18.475
Disyuntor 10A	uni	8	\$7.906	\$63.248
Disyuntor 16A	uni	5	\$11.278	\$56.390
Disyuntor 20	uni	4	\$11.878	\$47.512
Disyuntor 32	uni	2	\$14.014	\$28.028
Poste de luz	uni	4	\$13.095	\$52.380
Focos Patio	uni	4	\$174.990	\$699.960
THWN Cable 1,5	ml	320	\$206	\$65.907
THWN Cable 1,5	ml	320	\$206	\$65.907
THWN Cable 1,5	ml	320	\$206	\$65.907
THWN Cable 2,5	ml	221	\$328	\$72.496
THWN Cable 2,5	ml	221	\$328	\$72.496
THWN Cable 2,5	ml	221	\$328	\$72.496
Barra cooper	ml	2	\$4.811	\$9.622
tubos pvc 20mm	ml	530	\$652	\$345.560
				\$11.419.501

Mano de obra	UNIDAD	CANTIDAD	PRECIO UNITARIO	TOTAL		
Gásfiter	dia	11	\$48.375	\$532.125		
Ayudante Gásfiter	dia	11	\$29.219	\$321.404		
Maestro Eléctrico	dia	11	\$45.150	\$496.650		
Ayudante Eléctrico	dia	11	\$27.542	\$302.957		
Trazador	dia	20	\$35.475	\$709.500		
Jornal	dia	40	\$19.995	\$799.800		
Carpintero + Ayudante	dia	40	\$64.500	\$2.580.000		
uente: Elaboración Propia.						

Fuente: Elaboración Propia.

Total	\$17.161.936

El presupuesto de este proyecto se redujo lo más posible, no obstante, se siguen utilizando materiales de alta calidad y resistencia. Cabe aclarar que el porcentaje correspondiente a un 29% de las leyes sociales para la mano de obra esta incluida dentro de su costo día de trabajo.

CAPÍTULO 8: CONCLUSIONES Y RECOMENDACIONES.

8.1 Conclusiones

El realizar el diseño de las instalaciones sanitarias fue un trabajo complejo, ya que para poder desarrollar esto, es necesario estudiar Decretos del Ministerio de Vivienda y Urbanismo y del Ministerio de Salud junto a sus Anexos. Al terminar esta etapa de recopilación se presentaron problemas de cálculos, que determinan diámetros de tuberías, pendientes y presiones, entre otros. La presión de artefactos es uno de los puntos mas complejos, un mal cálculo genera que el artefacto mas desfavorable no tenga la presión suficiente para funcionar. Pese a los obstáculos y una ardua revisión, al finalizar con las Instalaciones Sanitarias no se presentaron errores, por lo tanto, todos los Artefactos y tuberías quedaron diseñadas de una correcta manera.

Con respecto a la Instalación Eléctrica, el proceso es similar al de las instalaciones previamente mencionadas, con una diferencia en los cálculos, ya que estos no presentaban mayor complejidad. El no presentar dificultades no quiere decir que sea menos importante, ya que al realizar un mal cálculo y a su vez una mala ejecución de estos, se pueden generar graves accidentes, tales como; corto circuitos, incendios, deterioro en artefactos electrónicos o en recursos de vital importancia de la Base de Operaciones Aéreas. Tras una exhaustiva lectura y constantes repeticiones de dichos cálculos se logró el correcto diseño de los Planos de Iluminación y de los Planos de Enchufes.

Por otro lado, el desarrollar el Plan de Trabajo Semanal fue un trabajo sin complicaciones, se estimaron los tiempos de ejecución correspondientes para que este no tuviera retrasos y a su vez no existieran partidas muy prolongadas, logrando así poder obtener un trabajo preciso y efectivo. De esta manera la CONAF mantendrá una organización y control constante en el proceso del proyecto.

En una entidad del gobierno el presupuesto destinado a este proyecto es limitado. Por esta razón que la propuesta llevada a cabo no incluye paneles solares o una Base de Operaciones Aéreas con materiales estructurales más resistentes.

Por consideraciones de costos se tomó la decisión de utilizar containers como módulos habitacionales, de baños o camarines y de áreas comunes, lo que permite una rápida puesta

en obra o una rápida desinstalación cuando esto sea necesario. El bajo costo, su diseño estructural y su alta resistencia al clima costero lo hace ser una mejor opción ante una construcción convencional de albañilería u hormigón armado.

La recepción por parte del personal especializado de la CONAF fue un aporte y un apoyo significativo, ejemplificado en el jefe de operaciones de CONAF Valparaíso al brindar su tiempo y conocimiento para responder una serie de preguntas donde su mayor preocupación se enfoca en la precariedad de la base de operaciones aéreas dejando clara las condiciones básicas en que se encuentra el establecimiento.

Para finalizar, el hecho de que la actual Base de Operaciones Aéreas no presente Instalaciones Sanitarias y Eléctricas hace que este proyecto sea exigente, debido a las expectativas que se generan por parte de los funcionarios de la Base ya mencionada y la CONAF. Esto implica un mejoramiento en sus hábitos diarios junto a sus necesidades básicas, en su estructura e infraestructura.

8.2 Recomendaciones

Para fines de este proyecto se recomienda que la CONAF contrate un Inspector Técnico de Obras (ITO), con la finalidad de que se realicen supervisiones constantes a las excavaciones y a las instalaciones eléctricas, de agua potable y sanitarias propuestas a lo largo del proyecto.

Por otra parte, consultar a la empresa contratista de los containers modulares, cuáles serían las respectivas mantenciones en una zona costera para dichos containers, ya que pese a ser resistente a la corrosión atmosférica, después de un tiempo no quedara exento del daño que se pueda producir por sus sales minerales.

Como ultima recomendación, se debe consultar con los respectivos fabricadores sobre las mantenciones a los distintos artefactos a instalar, como, por ejemplo, cada cuanto retirar los sedimentos de la fosa de decantación, mantención de bomba de agua, entre otros.

Capítulo 9: BIBLIOGRAFÍA

- Pãºblicas, M. D. O. (2009, 10 febrero). dto 50 (28-ene-2003) M. de Obras Públicas
 | Ley Chile. Biblioteca del Congreso Nacional de Chile. www.bcn.cl/leychile.
 https://www.bcn.cl/leychile/navegar?idNorma=207101
- de Higiene, M. A. D. H. A. M. (1926, 23 mayo). dto 236 (23-may-1926) M. de Higiene; Asistencia; Ministerio de Higiene, Asistencia, Previsión y Trabajo | Ley Chile. Biblioteca del Congreso Nacional de Chile. www.bcn.cl/leychile. https://www.bcn.cl/leychile/navegar?idNorma=171085
- S.R.M.S.R.M. (2014). Guía para presentación de Proyectos de Aguas Servidas
 Domésticas Particular. Subdepartamento Control Sanitario Ambiental Unidad de
 Aguas. https://seremi13.redsalud.gob.cl/wrdprss_minsal/wp content/uploads/2014/08/1.3-01-GUIA-PARA-PRESENTACI%C3%93N-DE PROYECTOS-DE-AGUAS-SERVIDAS-DOMESTICAS-PARTICULAR.pdf
- Manuales, Instructivos y Procedimientos. (2015). Seremi Metropolitana.
 https://seremi13.redsalud.gob.cl/preguntas-frecuentes/instructivos-y-procedimientos/
- de EconomÃa, E. D. S. R. F. M. Y. (1984, 23 noviembre). dto 258 (23-nov-1984)
 M. de Economía, Fomento y Reconstrucción; Subsecretaría de Economía, Fomento y Reconstrucción | Ley Chile. Biblioteca del Congreso Nacional de Chile.
 www.bcn.cl/leychile. https://www.bcn.cl/leychile/navegar?idNorma=231795
- Alcance de licencias de instalador eléctrico. (2015). SEC.
 https://sec.custhelp.com/app/answers/detail/a_id/584/%7E/alcance-de-licencias-de-instalador-el%C3%A9ctrico

- B. (2015). BIOPLASTIC: PRODUCTOS DE POLIETILENO Nº1 EN EL MERCADO. Bioplastic. https://bioplastic.cl/
- Manual de Instalación Fosas y Accesorios. (2014). AMERPLAST.
 https://amerplast.cl/storage/app/media/uploaded-files/1_Manual%20Fosas%20AMP.pdf
- Félix Mendoza González. (2016). Bombas Centrífugas. Aplicación, Sistemas,
 Principios Fundamentales y Selección (página 2) Monografias.com. Bombas
 Centrífugas. Aplicación, Sistemas, Principios Fundamentales y Selección.
 https://www.monografias.com/trabajos36/bombas-centrifugas/bombas-centrifugas2.shtml
- TUBERIA HDPE |. (2016). INTELSEG. https://www.intelseg.cl/tuberia-hdpe/
- CONAF. (2015). CONAF. https://www.conaf.cl/
- P. (2020, 12 noviembre). ¿Qué es PPR o Polifusión? Ampersand Chile. https://ampersandchile.cl/que-es-ppr/
- de EconomÃa, M. (1983, 30 junio). dto 92 (30-jun-1983) M. de Economía | Ley Chile. Biblioteca del Congreso Nacional de Chile. www.bcn.cl/leychile.
 https://www.bcn.cl/leychile/navegar?idNorma=9058&idVersion=2002-

ANEXOS

Entrevista a Juan Atienza – Jefe de Operaciones.

1. ¿Cuándo fue fundada la Base de Brigada "Palma 1"?

No es una Base de Brigada, es la central de coordinación regional y al lado de la central regional de coordinación, sí hay una base de brigada.

La Central de coordinación regional, nosotros llegamos en el año 1989 y también en ese mismo año en esa misma fecha llegó la brigada que está aquí al lado. Sin embargo, debo decir que con antelación a esa fecha ya existía aquí una base de brigada y también existía una central de despacho aéreo, que eso data de la década del 70', aquí había una subcentral de operaciones aéreas que funcionaba al lado de la torre de control del aeródromo de Rodelillo, que es una casa muy chica tipo "A" que trabajan alrededor de 3-4 funcionarios que permitían despachar recursos aéreos, en razón a instrucciones que se les enviaban de la central de coordinación regional, que en ese entonces funcionaba donde funciona la oficina regional de CONAF en Viña, en 3 norte, ahí está la central de coordinación regional, y aquí existía una subcentral de despacho aéreo, entonces ellos recibían instrucciones de la central de coordinación regional y aquí despachaban los recursos que estaban aquí mismo en el aeródromo de Rodelillo, que en ese entonces, te estoy hablando de la década de los 70' parte de los 80' los recursos aéreos estaban configurados básicamente por tres aviones tipo "AND WAGON", aviones chiquititos, que podían tirar 700 lts cada uno y funcionaba en base a un líder que iba en uno de los aviones y que dirigía todas las operaciones de los tres aviones, y que tenía contacto radial por tierra. Paralelo a eso aquí mismo en el aeródromo, había una brigada llamada "Palma 20" en ese entonces, que era una brigada aerotransportada porque además de aviones había un helicóptero un "HIU 500" y esa brigada funcionaba con ese helicóptero, ósea había un incendio lo despachaban y la brigada se subía al helicóptero y la brigada iba al incendio.

Eso cambio a partir del año 1989 porque el año 89 nosotros construimos aquí nuestra central de coordinación regional, ya dejó de estar en 3 norte y paralelamente se reemplazó la brigada esa que estaba aquí muy deteriorada se reemplazó por una brigada nueva qua está aquí al lado de la central de coordinacional.

2. ¿Quién fundo la Base de Brigada "Palma 1"?

Eso data de la década del 70'-71' de la época de los voluntarios, no existan brigadas de profesionales en chile, en ese entonces el organismo encargado de combatir incendios forestales, en primer lugar, era el servicio agrícola ganadero y posteriormente pasó a ser parte de Carabineros de Chile y a fines del año 71' cuando se crea la corporación nacional forestal pasa a depender de la Corporación Nacional Forestal. Parte en primera instancia con brigadas voluntarias que se habían establecido por la comunidad, estaba la brigada canal viña, brigada en la parte alta de Valparaíso, había como 3 brigadas voluntarias, y que

después bajo el arrimo de la CONAF se empieza a profesionalizar y a hacer un trabajo remunerado, ahí nace a finas del 71'-72'.

3. ¿Por qué fue fundada y para qué?

Desde hace mucho tiempo en la región de Valparaíso y no solamente en la región sino que en todo el país ha tenido que enfrentar el tema de incendios forestales y como te digo en un principio los primeros que estuvieron a cargo como organismo fue el servicio agrícola ganadero, y después el estado a través de Carabineros de Chile, ahora porque se requiere, porque los incendios forestales siempre han existido y para poder enfrentar este problema se requiere una organización y esa organización debe estar a cargo de una institución, como es un problema de bien público tiene que estar en una institución que dependa del estado. En este caso primero en el servicio agrícola y ganadero después Carabineros de Chile y finalmente en CONAF. Es un problema que afecta a todos los chilenos, medio ambiente e incluso a las personas y por lo tanto requiere ser enfrentado por el estado a través de una institución a través de un organismo en este caso CONAF.

4. ¿Quiénes integran y componen la Base de brigada "Palma 1"?

La central coord. Regional está conformada por personal de dotación, es decir de planta y esa dotación de planta hay profesionales, técnicos y hay personas que dadas por su experiencia forman parte de la dotación y además en la época de incendios forestales, obviamente se contratan transitorio que son el grueso, nosotros tenemos alrededor de 43 personas de dotación, trabajamos durante todo el año y el verano en el pick llegamos alrededor de las 600 personas y la diferencia está conformada por el personal transitorio.

5. ¿Cuándo fue creada la Base de Operaciones Aéreas?

No te puedo decir cuál fue la fecha de cuando fue fundada, pero lo que yo sé es que data de la época del 75'-76'.

6. ¿Por quién fue fundada la Base de Operaciones aéreas?

Esta, al igual que la central de coord. Regional fue fundada por el servicio agrícola ganadero pero un tiempo después, como tres años después.

7. ¿Por qué fue creada esta Base de Operaciones Aéreas?

Bueno, porque en la medida que los incendios se fueron complejizando fue necesario las operaciones aéreas tanto de aviones como helicópteros, y eso significaba que tuviéramos una oficina que se dedicara especialmente al despacho de este recurso que son recursos muy importantes para nosotros, dentro de otra cosa son de muy alto costo.

8. ¿Quiénes integran y componen la Base de Operaciones Aéreas?

La base de operaciones aéreas está integrada por lo que se denomina la tripulación de aeronave, cuando estamos hablando de tripulación de aeronave estamos hablando de pilotos, mecánicos, personal de acarreo de agua, es decir todo lo que conforme un equipo que permite la operación de aeronave tanto de avión como helicóptero.

9. ¿Cuál es la importancia relativa de la Base de Rodelillo al interior de la región en termino de recursos humanos y materiales?

Bueno, es muy importante porque la base de Rodelillo es donde se concentran todos los recursos aéreos, porque está ubicada donde se concentra gran parte de la ocurrencia de incendios forestales, estamos hablando de lo que antiguamente era la provincia de Valparaíso que era conformada por Valparaíso, Viña, Quilpué y Villa Alemana, hoy en día eso se dividió en dos provincias pero en el fondo en esas provincias se concentra más del 60% de la problemática de incendios forestales y porque además esos son de los incendios forestales que causan más daño a parte del forestal, ósea que estamos en una zona que se denomina interfaz urbana- forestal y donde los incendios forestales no son controlados a tiempo, obviamente amenaza la salud y vida de las personas y su vivienda. Ahora, no obstante, eso nosotros tenemos tres pistas más, una ubicada en la provincia de San Antonio, precisamente en la comuna Santo Domingo, en el Aeródromo Santo Domingo, tenemos otra pista acá en Viña en Torquemada en el Aeródromo de Concón, tenemos otra en San Felipe en el Aeródromo de San Felipe que también tenemos una base de operaciones para Aviones Cisterna, pero el principal es el Aeródromo de Rodelillo.

10. ¿La infraestructura actual de la Base de Operaciones cumple con las condiciones mínimas para cumplir con su propósito central?

Yo creo que en los últimos dos años la infraestructura que se ha armado aquí cumple con lo básico, hay muchas cosas que mejorar no solamente en el punto de vista de vitalidad de las tripulaciones sino del sistema de funcionamiento de aeronaves, hay que mejorar el sistema de carga de los aviones, hoy en día se usan elementos químicos, retardantes, espumas y que para eso hay que implementar un sistema que sea muy eficiente, muy expedito, eso se está mejorando digamos, pero hoy en día hay una brecha que superar.

11. ¿Cada cuánto tiempo se realiza mantención a las instalaciones de la Base?; ¿Cuándo se llevó a cabo la última?

Bueno la Base de operaciones de aviones cisterna es una base temporal no es una base definitiva por lo tanto se instala en el periodo de ocurrencia y se desinstala cuando termina el periodo de ocurrencia estamos hablando del noviembre — abril normalmente, y esa infraestructura que se arma ahí es una infraestructura que se arma ahí se arrienda, no es definitiva, por lo tanto en termino de mantenciones no se hacen mantenciones porque se instala y luego se desinstalan esto no es de CONAF esto se arrienda.

12. ¿La base cuenta con presupuesto específico para mantenerla en condiciones plenas para que aborde óptimamente cada temporada de incendios forestales?

Eso lo desconozco porque eso lo implementan a nivel central, no es la región, todo lo que es implementación de las instalaciones, todo eso es algo que ejecuta y se implementa con recursos de nivel central, la CONAF maneja un presupuesto, no es un presupuesto que se asigna por región eso lo ve la central.

13. ¿Existe algún proyecto que contemple el mejoramiento de la base?

Sí, hay un proyecto que en este momento se está ejecutando en la etapa de diseño y que está financiado por el gobierno regional y que considera el mejoramiento integral del Aeródromo de Rodelillo, hay como 10 acciones que se van a hacer, entre ellas se va a construir una plataforma para carga de aviones, un hangar para la mantención de los aviones, se va a recarpetear todo el camino de acceso, se arreglará la pista y la alargarán, es un proyecto bastante grande que incluye las instalaciones.