ESTUDIO DE TÉCNICAS DE REMODELACIÓN Y MANTENCIÓN DE PUENTES DE HORMIGÓN

UNIVERSIDAD MAYOR
FACULTAD DE CIENCIAS
ESCUELA DE CONSTRUCCIÓN CIVIL
SEDE EL CLAUSTRO

Proyecto de Título Para Optar al Título de Constructor Civil

Alumno: Álvaro Orlando Osorio Rojas.

Profesor: Alejandro Ossandón Sasso.

Septiembre, 2020

TEMARIO

- ✓ -Problemática.
- ✓ -Preguntas de Investigación.
- ✓ -Obj. Gral. y Obj. Específicos.
- ✓ -Estado del Arte.
- ✓ -Fallas.
- ✓ -Técnicas.
- ✓ -Caso de Estudio.
- ✓ -Análisis Económico.
- ✓ -Conclusiones.

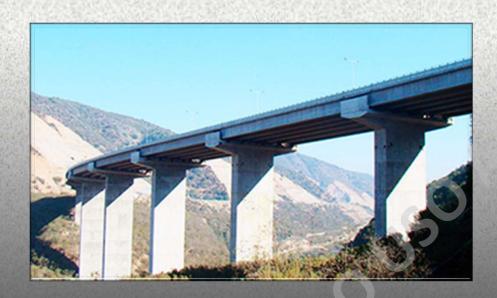
PROBLEMÁTICA

-FALTA DE CONTROL DEBIDO A LA CANTIDAD DE PUENTES.

-DESCONOCIEMIENTO DEL ESTADO ESTRUCTURAL.

-REACCIÓN TARDÍA ANTE LA MANTENCIÓN Y REPARACIÓN.

PREGUNTAS DE INVESTIGACIÓN


¿Existen Mejores Técnicas Para reparar los Puentes?

¿Cuales son las Principales Fallas en estas estructuras?

¿Se actualizado Chile en Materia de Nuevas Tecnologías en las Ciencias e Ingeniería de los Materiales?

OBJETIVOS GENERALES:

- Conocer las técnicas que existen en la reparación y mantención de puentes que se están haciendo en la actualidad, y así realizar un caso de estudio de un puente chileno, para aplicar estas técnicas y ver sus características técnicas y/o económica.

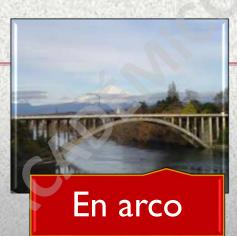
OBJETIVOS ESPECÍFICOS:

-Recopilación Bibliográfica, Información en el Ministerio de Obras Publicas (MOP).

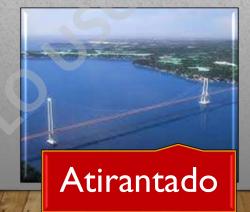
- Realizar Caso de Estudio de un puente (Puente Socos) -Conocer la cantidad y distribución en nuestro país de Puentes.

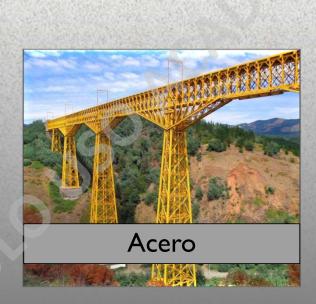
-Estudiar algunas Técnicas que se aplican en estas estructuras. -Conocer la Tipología que más se encuentra en el país.

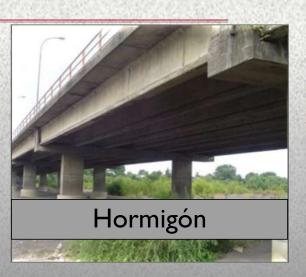
DEFINICIÓN DE PUENTE:


- Estructura que conecta accidentes geográficos.

TIPOS DE PUENTES







MATERIALIDAD DE LOS PUENTES

ELEMENTOS PRINCIPALES DEL PUENTE

SUPER ESTRUCTURA

Travesaños.

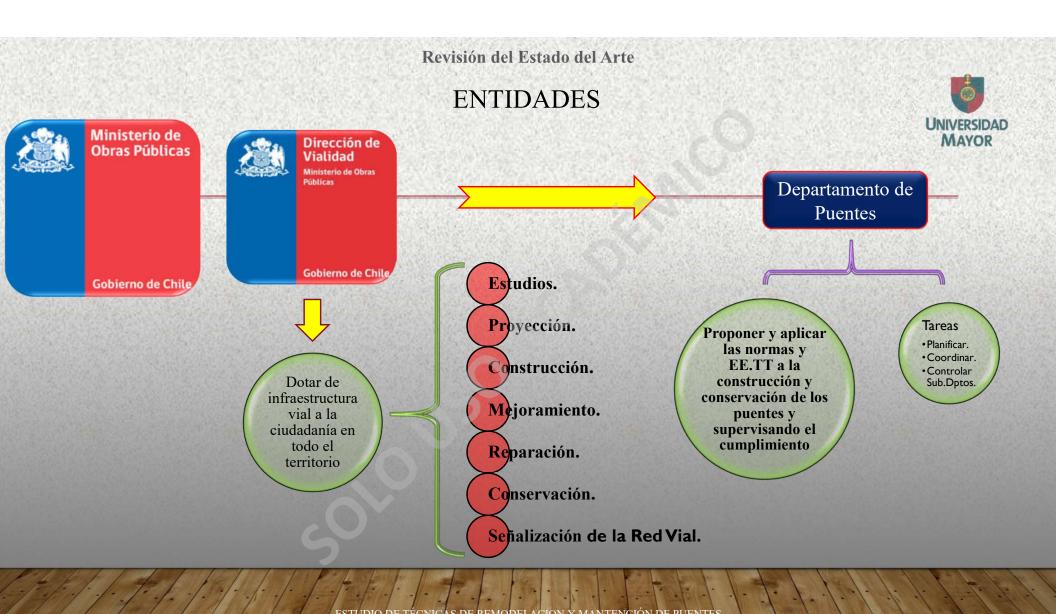
Tablero.

Vigas.

Arrostramientos. Barandas

INFRAESTRUCTURA

Estribos.


Cepas.

Fundaciones.

ESTUDIOS GENERALES PARA EL DISEÑO DE PUENTES

NORMATIVA

MANUAL DE CARRETERA

AASHTO

Gobierno de Chile

Volumen 1: Planificación, Evaluación de Desarrollo Vial

Volumen 2: Procedimientos de Estudios Viales.

Volumen 3: Instrucciones y Criterios de Diseño.

Volumen 4:Planos de Obras Tipo.

Volumen 5: Especificaciones Técnicas Generales de Construcción.

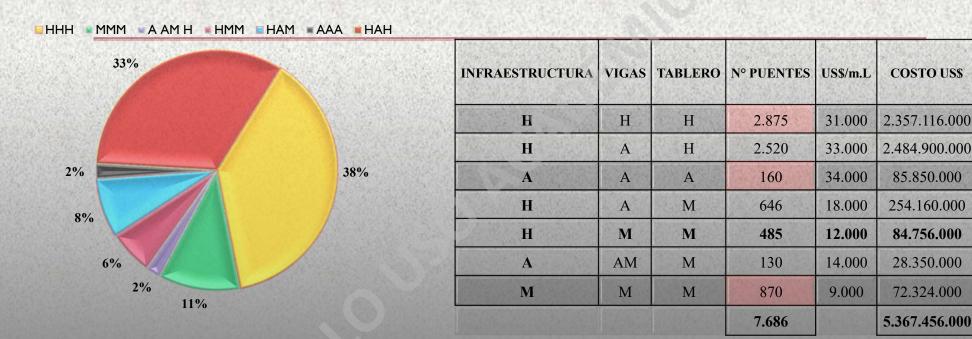
Volumen 6: Seguridad Vial.

Volumen 7: Mantenimiento Vial.

Volumen 8: Especificaciones y métodos de Muestreo, Ensaye y Control.

Volumen 9: Estudios y Criterios Ambientales en Proyectos Viales.

Sin Profundidad en las Normas de Mecánica de Suelos y Sismos


Objetivos Específicos Cumplidos:

- -Recopilación Bibliográfica, Información en el Ministerio de Obras Publicas (MOP).
- -Conocer la cantidad y distribución en nuestro país de puentes.
- -Conocer la Tipología que mas se encuentra en el país.
- -Estudiar algunas técnicas que se aplican en estas estructuras.
- -Realizar caso de estudio de un puente (Puente Socos)

CANTIDAD DE PUENTES Y SUS TIPOLOGÍAS

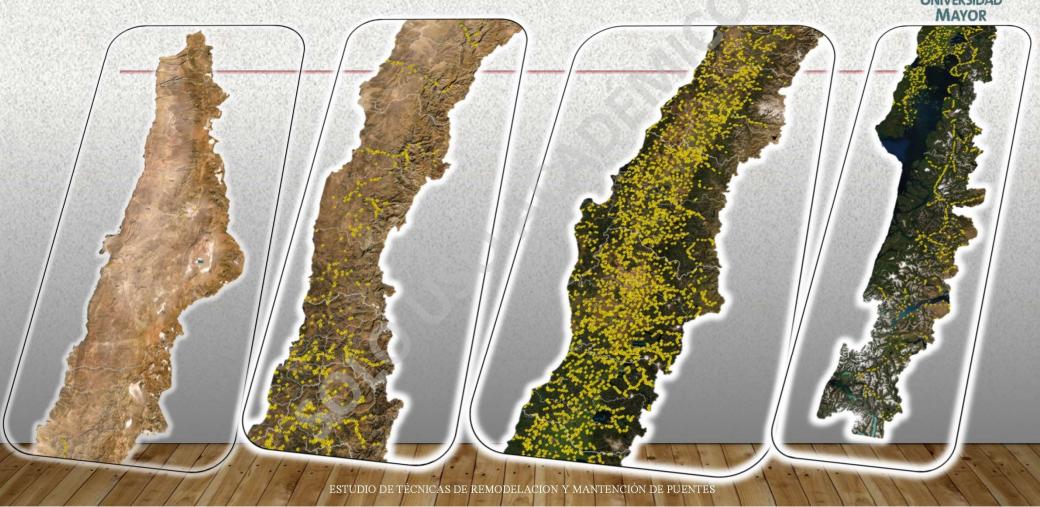
Fuente: Creación Propia con datos de misma tabla del Ministerio de Obras Publica

CANTIDAD DE PUENTES NO CONCESIONADOS POR REGIÓN

Región	*	Nº Puentes 💌	metros lineales	¥	
Arica y Parinacota		7	643		
Tarapacá		5	297		
Antofagasta		7	360	5	
Atacama		15	1.114		
Coquimbo		52	3.412		
Valparaiso		53	5.329		
Metropolita	na	59	6.70	6	
O'Higgins		65	7.494		
Maule		140	11.88	9	
Biobío		146	16.663		
Araucanía		157	10.956		
Los Ríos		83	5.783		
Los Lagos		161	10.004		
Aysén		100	5.200		
Magallanes		14	1.022		
Total		1.064	86.8		

Fuente: (Brüning Maldonado, 2016). Obtenido de Presentación de Dirección de Vialidad, en el 12° congreso del Nacional del Acero, ICHA.

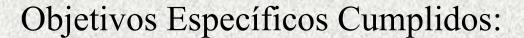
CANTIDAD DE PUENTES SEGÚN MATERIALIDAD POR REGIÓN



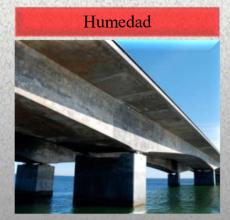
Región 🔻	HORMIGON -	METALICA X	METALICA/HORMIGON	s/c ×
Arica y Parinacota	2		5	
Tarapacá	2	3		:*:
Antofagasta	3	4		
Atacama	12		3	3.0
Coquimbo	18		31	3
Valparaiso	31	18	3	3
Metropolitana	39		20	
O'Higgins	31		32	2
Maule	90		50	
Biobío	79	¥	66	1
Araucanía	84	1	72	
Los Ríos	44		39	
Los Lagos	73	2	86	
Aysén	4	2	94	(*)
Magallanes	9	1	4	
Total	521	31	505	7

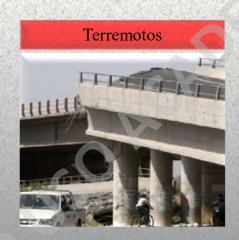
Fuente: (Brüning Maldonado, 2016). Obtenido de Presentación de Dirección de Vialidad, en el 12° congreso del Nacional del Acero, ICHA.

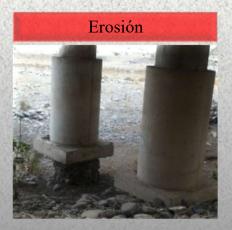
MAPA DE DISTRIBUCIÓN DE PUENTES EN CHILE



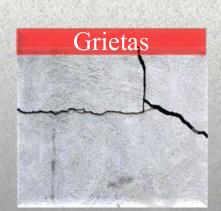
MAPA DE DISTRIBUCIÓN DE PUENTES EN LA R.M

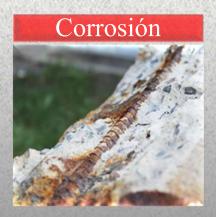





- -Recopilación Bibliográfica, Información en el Ministerio de Obras Publicas (MOP).
- -Conocer la cantidad y distribución en nuestro país de puentes.
- -Conocer la Tipología que mas se encuentra en el país.
- -Estudiar algunas técnicas que se aplican en estas estructuras.
- -Realizar caso de estudio de un puente (Puente Socos)

FALLAS EN LOS PUENTES.




Fallas en los Puentes.

Sistema TYFO

Fibra de Carbono

Fibra de Vidrio

Fuente: Especificar, 2011.

ventajas

- -Versátil.
- -No es Corrosivo.
- -Aumento de Carga.
- -Aumento de Vida Útil.
- -Protección ante el Fuego.
- -Fácil de Ejecución.
- -Peso Ligero (20%).

<u>Impermeabilizantes</u>

<u>Rollo</u> <u>Tipos</u>

Líquido

- -Impermeabilización con Membranas Asfáltica Prefabricada.
- -Impermeabilización con Membran de PVC.
- -Impermeabilización en Base a Poliuretano.
- -Impermeabilización Polimérica Acrílica.
- -Impermeabilización con Pastas Bituminosas.
- -Impermeabilización en Base a Revestimiento de Poliurea.

Sistema Delpatch

Ventajas

- -Soporta altas cargas vehiculares.
- -Asfalto de Alto Desempeño.
- -Adherencia al Hormigón >400Psi y Acero > 500 Psi.
- -Resistencia al Impacto.
- -Resistencia a Químicos (Aceite, Combustibles de avión, Cloruro de sodio, etc.).

Hormigón Ultra-Alta Resistencia

 $m^3 = 160 \text{Kg/m}^3$

Beneficios

- -Mayor Resistencia Mecánica. -Mayor Durabilidad. -Resistencia al Desgaste. -Resistencia a Ambientes Agresivos.

Resistencia Mecánica

- -Compresión: 1.530 Kg/cm² 2.040 Kg/cm². -Flexo Tracción: 204 Kg/cm² 408 Kg/cm². -Modulo de Elasticidad: 500.000 Kg/cm². -Energía Elástica: 20 30 J/m².

Protección Sísmica

<u>Aisladores</u> <u>Disipadores</u>

Aisladores

Tipos

- -**LDRB:** Aislador Elastómero de Bajo Amortiguamiento.
- Amortiguación del 2% al 5%
- El más simple.

- -**HDRB:** Aislador Elastómero de Alto Amortiguamiento.
- Amortiguación del 10% al 15%.
- Mayor Sensibilidad
 Ante Temperatura.

- -**HDRB**:Aislador Elastómero Con Núcleo de Plomo.
- Amortiguación del 25% al 30%.
- Núcleo de Plomo fluye (Def. Plástica)


Resistencia de 6000 Ton por aislador.

Desplazamiento de 60 cm.

Disipadores

<u>Tipos</u>

Metálico

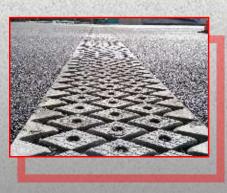
Amortiguamiento del 20 – 40%.

Resistencia de 800 Ton de carga axial.

Desplazamiento de 100 cm.

Viscoso

Juntas de Dilatación <u>Tipos</u>



Junta Elástica Tipo Chicle

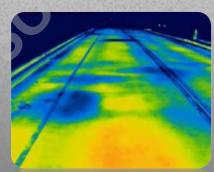
Juntas Apernadas de Neopreno Armado

Juntas Modulares.

Técnicas para Mantención

Monitoreo a través de RPAS (Drones)

Beneficios.

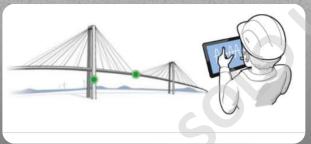


Evitar Intervención Humana.

Mayor detalles de la inspección.

Acceso a zonas imposibles de forma tradicional

Correcta Supervisión



Técnicas para Mantención

Monitoreo de Salud estructural

Beneficios.

Control Continuo de la estructura.

Alerta Temprana ante Fallas.

Ahorro de Costos y Tiempo.

Mayor precisión en el Diagnostico.

Levantamiento 3D para examinar la zona afectada

Objetivos Específicos Cumplidos:

- -Recopilación Bibliográfica, Información en el Ministerio de Obras Publicas (MOP).
- -Conocer la cantidad y distribución en nuestro país de puentes.
- -Conocer la Tipología que mas se encuentra en el país.
- -Estudiar algunas técnicas que se aplican en estas estructuras.
- -Realizar caso de estudio de un puente (Puente Socos)

Caso Estudio (Puente Socos)

Ubicación: Ruta 5 Norte,

Comuna de Ovalle, Región de Coquimbo.

Año Construcción: Década de 1940.

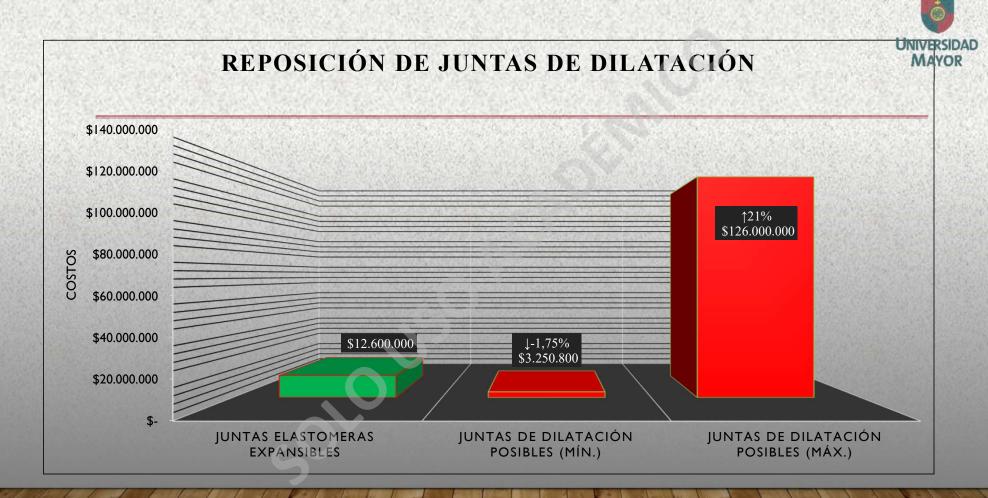
Longitud: 195 m.

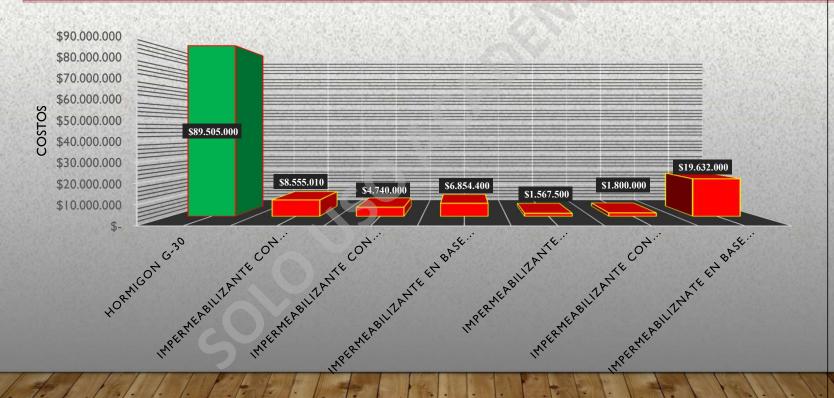
Tramos: 11 de 17,5 m cada uno.

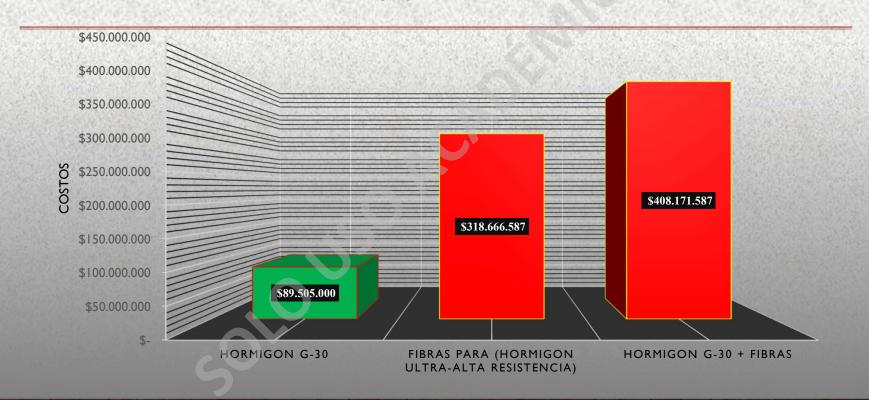
Ancho: 7 m calzada, 1 m por lado para pasillo.

Puentes Socos (A.P.U)

				PRECIO	TOTAL
				UNITARIO	(\$)
1	INFRAESTRUCTURA				
207	Gaviones de Protección	m³	500	28.000	14.000.000
617	Reparación de Hormigones, Grietas y Fisuras en Cepas y Estribos	Unid	12	1.200.000	14.400.000
2	SUPERESTRUCTURA	N°		00.000	220.000
541	Postes Señalizadores	- 11	4	80.000	320.000
551 600	Señalización	Gl	-	800.000	800.000
600	Demolición y Retiro de Carpeta de Rodado	m ²	1.365	12.000	16.380.000
602	Reposición de Pavimento por Concreto Reforzado	m ²	1.989	45.000	89.505.000
607	Reemplazo de Desagües o Barbacanas	Tr.	11	100.000	1.100.000
615	Reparación de Apoyos Gerber	N°	32	1.800.000	57.600.000
616	Reparación e Inyección de Grietas y Fisuras (Losa)	Gl	1	6.000.000	6.000.000
623	Limpieza y Reparación de Apoyos Simples	N°	48	80.000	3.840.000
634	Reposición Juntas de Dilatación	ml	84	150.000	12.600.000
650	Reposición de Pasillos y Barandas	ml	414	280.000	115.920.000
705-1	Tachas Reflectantes	N°	300	3.800	1.140.000
3	VARIOS				
515	Losa de Acceso (6x10x0,3) x2	m³	36	350.000	12.600.000
618	Limpieza y Pintado General del Puente	ml	200	55.000	11.000.000
622	Ejecución de Planos de Recepción	Gl	1	4.500.000	4.500.000
208	Mejoramiento de Cauce en Puente	m²	20.000	3.500	70.000.000
5.704-1	Demarcación del Pavimento, Línea Central Continua	m	300	4.500	1.350.000
5.704-5	Demarcación del Pavimento, Línea Lateral Continua	m	600	4.500	2.700.000
	Colocación de Barreras de Seguridad Nuevas	ml	128	22.000	2.816.000
4	PLAN DE MANEJO INTEGRAL				
980	Señalización, Control y Mantenimiento de Tránsito	Gl	1	50.000.000	50.000.000
5.106-1	Instalación de Faenas y Campamentos	Gl	1	30.000.000	30.000.000
	Sistema de Evacuación de Aguas Servidas	Gl	1	3.000.000	3.000.000
5 210 1	Apertura, Explotación y Abandono de Empréstitos	Gl	1	4.000.000	4.000.000
	Plantas de Producción de Materiales	Gl	1	3.000.000	3.000.000
	Apertura, Uso y Abandono de Botaderos	Gl	1	3.500.000	3.500.000
3.004-1	Apertura, 030 y Abandono de Botaderos	Gi	1	3.300.000	3.300.000
		TOTAL NETO)		532.071.000
		19 % I.V.A.			
		TOTAL			101.093.490 633.164.490







REPOSICIÓN DE PAVIMENTO DE CONCRETO REFORAZADO

UTILIZACIÓN DE HORMIGÓN ULTRA ALTO RESISTENTE

Objetivos Específicos Cumplidos:

- -Recopilación Bibliográfica, Información en el Ministerio de Obras Publicas (MOP).
- -Conocer la cantidad y distribución en nuestro país de puentes.
- -Conocer la Tipología que mas se encuentra en el país.
- -Estudiar algunas técnicas que se aplican en estas estructuras.
- -Realizar caso de estudio de un puente (Puente Socos).
- -Así se cumple el objetivo General.

CONCLUSIÓN

- > Se cumplió con los objetivos.
- > Aumento de los costos.
- Baja alteración en las estructuras.
- Mayor opciones de técnicas a utilizar.
- Mejor control del estado de las estructuras.
- Aporte a la formación.
- El constructor debe salir de lo tradicional.

Gracias.