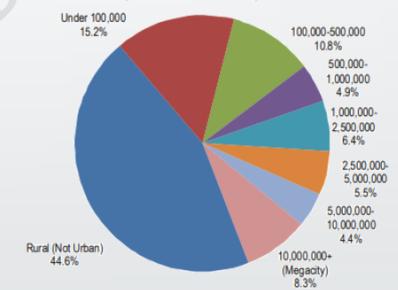


CONSTRUCCIÓN DE CALZADAS ASFALTICAS EN URBANIZACIONES

Proyecto de Título para optar al Título de Constructor Civil


Estudiante: Rosa Cáceres Navarrete

Profesor guía: José Francisco Benavides Núñez

INTRODUCCIÓN

- Población Urbana 55,4% vs
 Población Rural 44,6%
- Crecimiento zona urbana en Latinoamérica en los últimos 60 años de un 41% a un 80%
- En Chile hay un 39% mas de Población Urbana que Rural

Gráfico 1: Distribución Mundial de la Población World Population Distribution: 2018
URBAN (BY POPULATION) & RURAL

Fuente: (Urban area or geography, 2018)

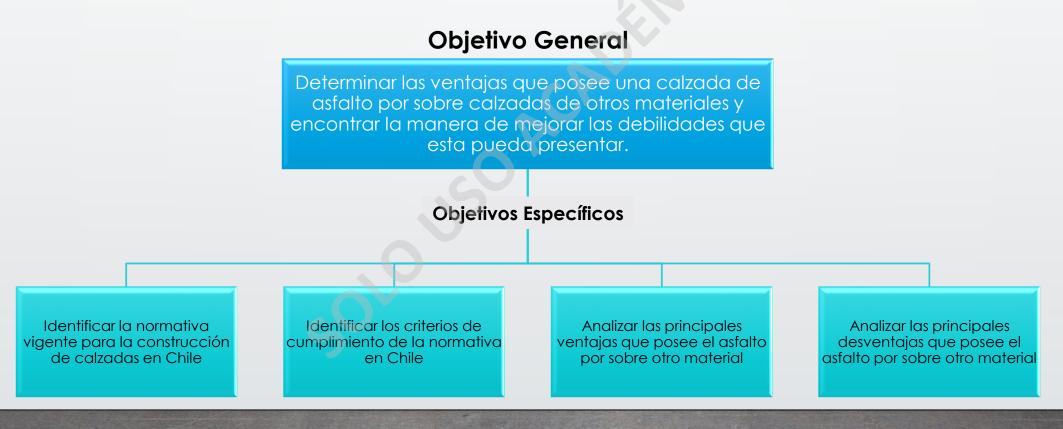
INTRODUCCIÓN

• Déficit Habitacional en Región Metropolitana: 45% del país

Tabla 1: Déficit habitacional por región CENSO 2002

OBSERVATORIO URBANO

MINISTERIO DE VIVIENDA Y URBANISMO


	DATOS GENERALES			DÉFICIT CUANTITATIVO				
Región	Número de viviendas	Número de hogares	Total población	Viviendas irrecuperables	Hogares allegados	Núcleos allegados, hacinados e independientes	Total requerimientos vivienda nueva	
Total País	3.899.448	4.141.427	14.800.126	155.402	241.839	146.301	543.542	
Arica y Parinacota	45.948	49.746	181.369	2.556	3.798	1.696	8.050	
Tarapacá	56.597	62.127	227.575	5.338	5.530	2.541	13.409	
Antofagasta	111.731	124.107	466.993	2.882	12.376	5.846	21.104	
Atacama	65.581	68.684	246.073	3.650	3.103	2.184	8.937	
Coquimbo	159.578	166.902	589.510	8.717	7.324	5.139	21.180	
Valparaíso	423.128	440.704	1.511.547	15.906	17.576	13.534	47.016	
Metropolitana	1.531.863	1.656.558	5.979.763	49.784	124.695	68.492	242.971	
O'Higgins	203.263	214.249	768.630	10.388	10.986	7.108	28.482	
Maule	240.069	252.194	893.095	11.747	12.125	8.225	32.097	
Ñuble	116.852	121.760	429.645	5.013	4.908	3.362	13.283	
Biobío	364.127	381.258	1.397.197	14.169	17.131	11.567	42.867	
La Araucanía	229.583	238.315	845.421	10.623	8.732	5.962	25.317	
Los Ríos	94.925	99.028	343.137	4.767	3.963	2.846	11.576	
Los Lagos	189.505	196.886	694.222	8.106	7.381	6.169	21.656	
Aysén	24.947	25.693	85.181	1.166	746	682	2.594	
Magallanes	41.751	43.216	140.768	590	1.465	948	3.003	

INTRODUCCIÓN

- Zona Urbana:
 - Instalaciones sanitarias
 - Instalaciones energéticas
 - Alcantarillado
 - Aguas Iluvia
 - Ejecución del pavimento de las calles, pasajes, veredas, entre otros.
- Ejecución del pavimento de las calzadas: En Chile el material que predomina es el asfalto

PLANTEAMIENTO DEL PROBLEMA

¿Por qué preferir el asfalto como la mejor alternativa a la hora de construir calzadas en proyectos de urbanizaciones, cuáles son sus reales ventajas por sobre otro material?

ASFALTO

 "Sustancia de color negro que procede de la destilación del petróleo crudo, se encuentra en grandes depósitos naturales, como el lago Asfaltites o en el mar Muerto y se utiliza para pavimentar carreteras y como revestimiento impermeable de muros y tejados." (RAE)

Fuente: (Hidalgo, 2019)

ASFALTO: Antecedentes Históricos

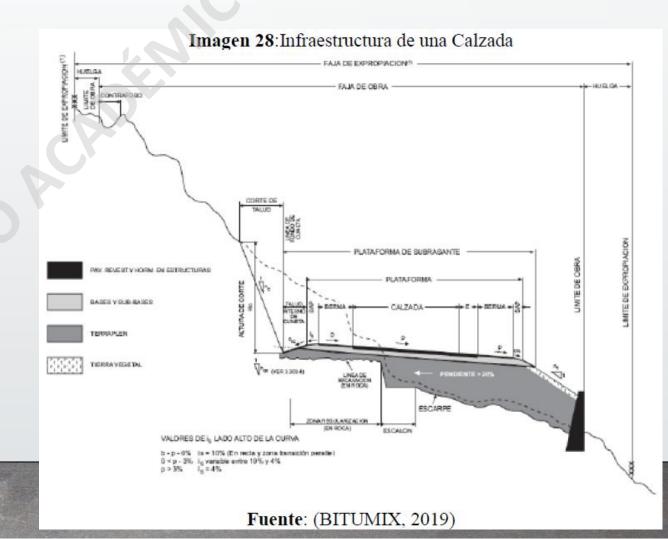
- 3.800 A.C: Impermeabilizante en tanques de agua por los Sumerios
- 1.792 A.C: Biblia; Torre de Babel "Ellos usaron ladrillos en vez de piedras y asfalto en vez de mortero"
- 1.802: Primer antecedente de uso asfáltico para la construcción de calzadas en Francia
- 1.824: Pillot et Eyquem fabricó adoquines de asfalto,
 Plaza de la Concordia
- 1.837: Campos Elíseos de Paris
- 1.850: Ingeniero suizo Merian en una aldea ubicada en Travers, construyó una calzada de roca asfáltica calentada y compactada

Imagen 5: Construcción de Calzada en Roca Asfáltica Calentada

Fuente: (Peterson, 2019)

URBANIZACIONES

- Ejecutar el pavimento de las calles y pasajes, y obras de ornato, las instalaciones sanitarias y energéticas, con sus obras de alimentación y desagües de aguas servidas y aguas lluvias, y las obras de defensa y de servicio del terreno (Ordenanza General de Urbanismo y Construcciones, 2018).
- "Acondicionar una porción de terreno y prepararlo para su uso urbano, abriendo calles y dotándolas de luz, pavimento y demás servicios" (RAE)



URBANIZACIONES: Normativa

- Aguas Iluvias; Guía de Diseño y Especificaciones de Elementos Urbanos de Infraestructura de Aguas Lluvia.
- Agua potable y Alcantarillado; Ley General de servicios Sanitarios, Norma Chilena 691, Reglamento de Instalaciones Sanitarias de Agua potable y Alcantarillado
- Electricidad; Norma Chilena Eléctrica 2/84 y Norma Chilena Eléctrica 4/2003
- Gas; Decreto N°66
- Pavimentación; Manual de Carreteras, Código de Normas y Especificaciones
 Técnicas de Obras de Pavimentación.

CONSTRUCCIÓN DE CALZADAS ASFÁLTICAS EN URBANIZACIONES: Infraestructura de una calzada

- Terreno natural (en rigor no es una obra, si su preparación)
- Terraplén
- Corte
- Mejoramientos
- Obras de arte
- Todo lo necesario para asegurar su estabilidad

CONSTRUCCIÓN DE CALZADAS ASFÁLTICAS EN URBANIZACIONES: Superestructura de una calzada

- La superestructura o pavimento está compuesta por una o más capas sobre el nivel se subrasante
- Permitan distribuir las cargas que imponen el tránsito

Imagen 29: Fundación y Pavimento

Fuente: (BITUMIX, 2019)

CONSTRUCCIÓN DE CALZADAS ASFÁLTICAS EN URBANIZACIONES: Funciones de una Calzada

- Prestar un servicio
 - Seguridad
 - Velocidad
 - Confort
- Proteger al suelo natural
 - Distribuir Cargas
 - Impermeabilidad
- Tener integridad

Fuente: (SERVIU, 2019)

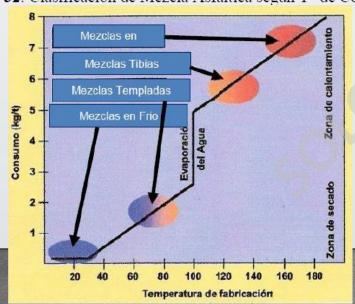
 Tabla 2: Longitud de Caminos Nacionales

LONGITUD DE CAMINOS NACIONALES, REGIONALES PRINCIPALES Y PROVINCIALES, SEGUN REGION Y CAPA DE RODADURA - DIC. 2017
(Longitud en km.)

- Estas mezclas son empleadas en los pavimentos flexibles
- Los pavimentos flexibles son los más utilizados actualmente en Chile

		Red Vial Pa	vimentada		Solucione	s Básicas	Red Vial No	Pavimentada	
Región	Asfalto	Hormigón	Asf./Horm.	Caminos Básicos Intermedios	Capa Protección	Granular Estabilizado	Ripio	Tierra	Total
Tarapacá	986,301	0,690	0,300	0,000	31,203	143,990	136,690	211,997	1.511,171
Antofagasta	1.739,863	3,450	0,000	0,000	142,410	239,980	23,010	443,895	2.592,608
Atacama	973,378	0,000	0,000	46,000	194,681	817,541	134,472	62,840	2.228,912
Coquimbo	1.161,400	30,460	7,750	45,550	36,039	100,830	183,800	28,650	1.594,479
Valparaiso	994,276	161,329	22,450	7,350	96,372	0.000	37,199	12,007	1.330,983
Libertador General Bernardo O'Higgins	979,732	44,365	54,310	3,070	28,500	7,000	25,045	70,620	1.212,642
Maule	1.411,190	159,970	74,650	23,200	121,270	31,731	471,020	92,750	2.385,781
Biobío	1.804,862	94,811	39,780	13,220	79,200	12,197	827,517	184,807	3.056,394
Araucania	1.273,042	72,740	97,570	0,000	116,300	52,200	200,138	15,720	1.827,710
Los Lagos	1.145,642	160,026	51,840	0,000	159,975	0,300	591,510	14,870	2.124,163
Aysén del General Carlos Ibánez del Campo	268,719	128,637	0,000	0,000	0,000	293,570	953,600	45,082	1.689,608
Magallanes y La Antártica Chilena	7,880	592,140	0,000	0,000	143,670	65,080	942,740	0,000	1.751,510
Metropolitana de Santiago	1.063,016	131,354	85,890	18,048	150,874	0,000	39,600	2,773	1.491,555
Los Ríos	650,562	49,459	99,290	6,000	90,218	0,000	240,885	0,000	1.136,414
Arica y Parinacota	405,730	0,300	0,000	0,000	172,030	135,530	10,030	261,974	985,594
Total	14.865,593	1.629,731	533,830	162,438	1.562,742	1.899,949	4.817,256	1.447,985	26.919,524

Notas: - Los Caminos Pavimentados son aquellos que se realizan mediante proyectos específicos y/o poseen diseño de ingenieri


Fuente: (Dimensionamiento y Características de la Red Vial Nacional, 2017)

La Red Vial comprendida en este cuadro también se conoce como "Red Vial Básica", como se indicaba en los informes de Dimensionamiento de los años anteriores.

Información a Diciembre del año 2013

- CLASIFICACION:
- Según Temperatura de confección
 - Caliente >140°C; Cemento asfáltico
 - Tibias >120°C; Cemento asfaltico + Aditivos
 - Templadas >80°C; Emulsiones + Aditivos
 - En frio >10°C; Emulsiones

Imagen 32: Clasificación de Mezcla Asfáltica según T° de Confección

Fuente: (BITUMIX, 2019)

Según Granulometría:

Por Granulometría (según % pasa tamiz N°8)

- Fina 50-65%
- Densa 35-50%
- Semidensa 28-42%
- Gruesa 20-35%
- Abierta 5-20% Continuas
- Discontinuas
- Por Granulometría (distribución de tamaños)
 - Continuas
 - Discontinuas

- Según Ubicación dentro de la Estructura:
 - Carpeta asfáltica
 - Intermedia (binder)
 - Base asfáltica
 - Bases estabilizadas con asfalto
 - Espumado
 - Emulsión

Según Porcentaje de Huecos:

- Drenantes >20%
- Abiertas > 15%
- Semi abiertas 10-15 %
- Gruesas 7-10 %
- Semi cerradas 4-6 %
- Cerradas < 4%

APLICACIÓN MEZCLAS ASFÁLTICAS EN CHILE

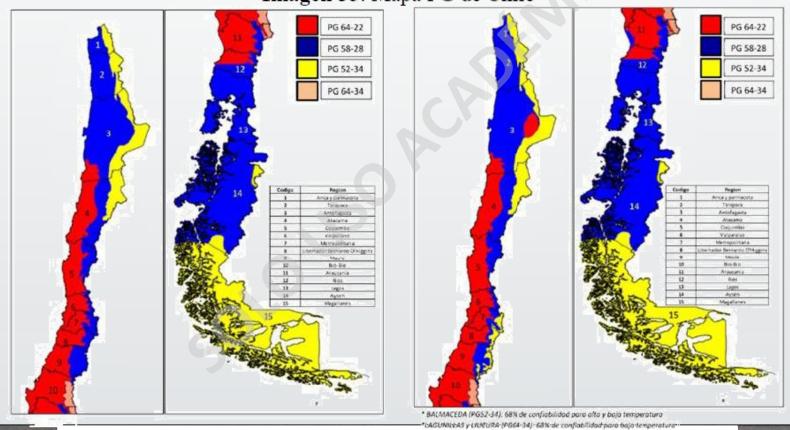
- En Chile, se decide el cemento asfáltico dependiendo de su Grado de Desempeño.
- El Grado de Desempeño de un cemento asfáltico forma parte de un sistema denominado SUPERPAVE (Superior Performance Pavements)
- El Método está incorporado en las Especificaciones y Procedimientos de Ensayos del Volumen 8 de Manual de Carreteras.
 - 8.301.8 Asfaltos: Especificaciones Superpave para ligantes Asfálticos

- Esta clasificación permite cumplir con dos objetivos principales:
 - Medir las propiedades reológicas
 - Envejecimiento a los que estarán sometidos durante la construcción y toda su vida útil.
 - Así el grado del cemento asfáltico se expresa como sigue:

PG XX (IT) YY

O en caso de no reportar la temperatura intermedia:

PG XX YY


PG: Grado de Desempeño (Performance Grade)

XX: Temperatura de la muestra en laboratorio

IT: Temperatura intermedia de la muestra en laboratorio

YY: Baja temperatura de la muestra en laboratorio

Imagen 35: Mapa PG de Chile

CONSTRUCCIÓN DE CALZADAS ASFÁLTICAS EN URBANIZACIONES: Mezclas Disponibles en Mercado Chileno

MEZCLAS ESTRUCTURALES

- Renovia: carpeta de alta resistencia a la fatiga
- Rexovia: carpeta asfáltica anti-ahuellamiento
- Rexovia I: carpeta antipunzonamiento (áreas industriales)
- Renfovia: base asfáltica de alto módulo

CONSTRUCCIÓN DE CALZADAS ASFÁLTICAS EN URBANIZACIONES: Mezclas Disponibles en Mercado Chileno

MEZCLAS FUNCIONALES

- Viasaf: mezcla asfáltica anti-propagación de fisuras
- Rugovia D: carpeta discontinua, espesor 4 cm
- Rugovia MD: carpeta discontinua muy delgada, espesor 2,5 cm
- Rugovia UD: mezcla discontinua ultradelgada, espesor < 2,5 cm

OTRAS MEZCLAS

- Profilovia: mezcla para nivelaciones
- Mezclas para impermeabilizaciones
- Mezclas Tibias: mezclas producidas con reducción de temperatura
- Mezcla Roja 0/6: mezcla de color especialmente adaptada para ciclo vías, veredas y canchas deportivas
- Mezcla Roja 0/12: mezcla de color diseñada para requerimientos

CONSTRUCCIÓN DE CALZADAS ASFÁLTICAS EN URBANIZACIONES: Maquinaria

Imagen 50: Regadora de Asfalto

Fuente: (Amperio, 2018)

Imagen 47: Pavimentadora

Imagen 45: Rodillo Neumático

Fuente: (Catalogo de Equipos Caterpillar, 2018)

Fuente: (Catalogo de Equipos Caterpillar, 2018)

CONSTRUCCIÓN DE CALZADAS ASFÁLTICAS EN URBANIZACIONES: Normativa vigente para la construcción de calzadas en Chile

- Manual de Carreteras (MOP-VIALIDAD)
- Código de Normas y Especificaciones Técnicas de Obras de Pavimentación. (MINVU-SERVIU)

CONSTRUCCIÓN DE CALZADAS ASFÁLTICAS EN URBANIZACIONES: Procesos Constructivos

Fuente: (Carrasco, 2018)

Fuente: (Vera, 2019)

Fuente: (Carrasco, 2018)

Fuente: (Cisneros, 2019)

Fuente: (Ingenieros S.A, 2019)

CONSTRUCCIÓN DE CALZADAS ASFÁLTICAS EN URBANIZACIONES: Procesos Constructivos

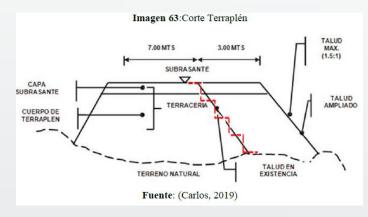
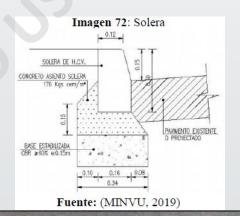



Imagen 69: Humectación de Terreno

Fuente: (AloRental, 2019)

Fuente: (Derpet, 2019)

Fuente: (Cáceres, Registro personal, 2016)

Fuente: (Aldana, 2018)

CONSTRUCCIÓN DE CALZADAS ASFÁLTICAS EN URBANIZACIONES: Procesos Constructivos

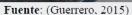


Imagen 81: Colocación de Mezcla Manual

Fuente: (Cáceres, Registro personal)

Imagen 87: Demarcación Leyenda

Fuente: (Cáceres, Registro personal, 2016)

- En la construcción de una calzada asfáltica dentro de una urbanización, el costo y la programación estarán directamente relacionados al CBR del suelo en el cual se llevará a cabo dicho proyecto
- En Chile, predominan los suelos pertenecientes al Grupo A-2, presentando CBR entre 20-40%.

Clasificación ASSHTO	Descripción	Clasif. S. U.	Densidad Seca (kg/m3)	CBR (%)	Valor K (psi/in)
	Suelo	s granulares:			
4-1-a, bien graduada	Grava	GW, GP	125 - 140	60 - 80	300 - 450
A-1-a, mal graduada	Glava	Gw, Gr	120 - 130	35 - 60	300 - 400
A-1-b	Arena Gruesa	SW	110 - 130	20 - 40	200 - 400
A-3	Arena Fina	SP	105 - 120	15 -25	150 - 300
	A-2 Material granula	r con alto cor	tenido de finos		
A-2-4 gravoso	Grava Limosa	GM	130 - 145	40-80	300 - 500
A-2-5, gravoso	Grava Areno Limosa	GM	130 - 145	70-00	300 - 300
A-2-4, arenoso	Arena Limosa	SM	120 - 135	20 - 40	300 - 400
A-2-5, arenoso	Arena Gravo Limosa	214	120 - 135	20 - 40	300 - 400
A-2-6, gravoso	Grava Arcillosa		120 140	20 40	200 450
A-2-7, gravoso	Grava Areno Arcillosa	GC	120 - 140	20 - 40	200 - 45
A-2-6, arenoso	Arcilla Arenosa	50	105 120	10 20	150 250
A-2-7, arenoso	Arcilla Grava Arenosa	SC	105 - 130	10 - 20	150 - 350
	Su	elos finos:			
	Limo		90 - 105	4 - 8	25 - 165*
A-4	Mezclas de	ML, OL			
A-4	Limo/Arena/	ML, OL	100 - 125	5 - 15	40 - 220 *
	Grava				
A - 5	Limo mal graduado	MH	80 - 100	4 - 8	25 - 190*
A - 6	Arcilla plástica	CL	100 - 125	5 - 15	25 - 255*
A-7-5	Arcilla Elástica moderadamente plástica	CL, OL	90 - 125	4 - 15	25 - 125 *

Fuente: (Hugo, 2012)

 La dependencia de los costos y el plazo construcción de una calzada asfáltica, incide en los diseños indicados por SERVIU

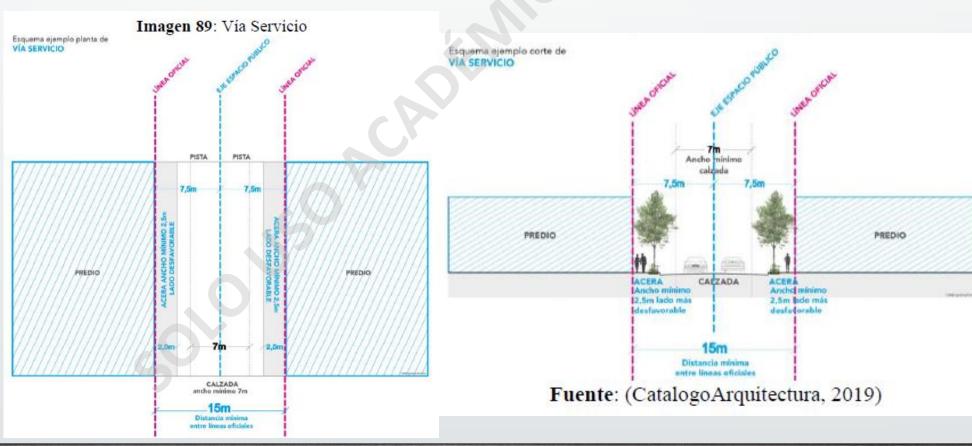
Tabla 9: Cartilla De Diseño De Pavimentos De Hormigón

Tipo de	Tránsito				CBR %		
Vía	Transito		£3	4 - 7	8 -12	13 - 20	> 20
Pasajes	£ 50.000 EE	H losa	140	130	120	120	120
		e base	300	150	150	150	150
Locales	£ 200.000 EE	H losa	160	140	130	130	130
		e base	300	150	150	150	150
Servicio	£ 1×106 EE	H losa	170	160	150	150	150
	5	e base	300	150	150	150	150

Fuente:(SERVIU, 2019)

£= menor o igual

Tabla 10: Cartilla De Diseño De Pavimentos Asfalticos Para Pasajes, Calles Locales Y De Servicio


Tipo de Vía	Tránsito	Сара	Estabilidad	CBR Capa			CBR Suel	lo	
·			(N)	(%)	£Ň	4 - 7	8 - 12	13 - 20	t 20
		Carpeta Asfáltica	6,000 - 9,000		40	40	40	40	40
Pasajes	£ 50.000 EE	Base		³ 100 ⁽¹⁾	150	150	150	150	150
Ť		Sub-Base		³ 20	150	150	200	150	
		Mejoramiento		³ 20 ⁽²⁾	450	200			
		Carpeta Asfáltica	6.000 - 9.000		40	40	40	40	40
Calles	£ 200.000 EE	Base		3 100 ⁽¹⁾	150	150	150	150	200
Locales		Sub-Base		³ 20	150	150	200	150	
		Mejoramiento		³ 20 ⁽²⁾	450	200			
		Carpeta Asfáltica	9.000 - 14.000		50	50	50	50	50
Calles de	£ 1×106 EE	Binder Asfáltico	8,000 - 12,000		50	50	50	50	50
Servicio		Base		³ 80	150	150	150	150	200
		Sub-Base		³ 20	150	150	250	150	
		Mejoramiento		3 20 ⁽²⁾	450	200			

£= menor o igual

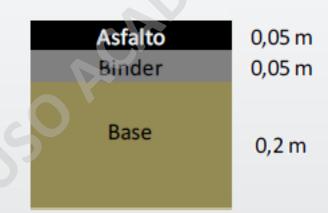
Fuente: (SERVIU, 2019)

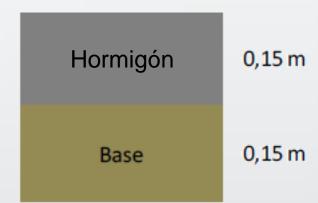
Tipos de vía

- Pasaje
- Locales
- Servicio

ESTUDIO PROYECTO

Datos del Proyecto


Largo del Tramo: 1000 ml

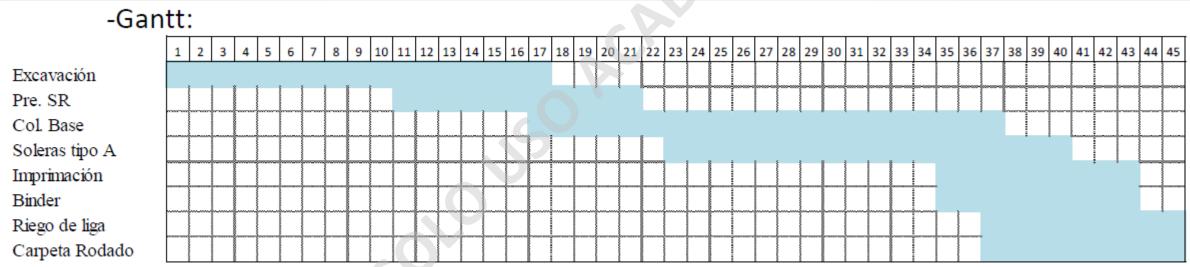

Ancho: 6 ml

Superficie: 6000 m2

CBR suelo: >20 %

Tipo de Vía: Servicio

• CONSTRUCCIÓN EN ASFALTO


-Cubicación:		
Descripción	unidad	Cantidad
Excavación	m3	1800
Preparación de Subrasante	m2	6000
Sum Y colocación base (e:0,15 m)	m3	1200
Sum Y coloc. De Soleras	ml	2000
Imprimación asfaltica	m2	6000
Carpeta Binder e: 0,05 m	m2	6000
Riego de Liga	m2	6000
Carpeta asfaltica e:0,05 m	m2	6000

		Plazo en dias	Plazo en dias
Pav. Asfalto	Rendimiento	Trabajados	Corridos
Excavación	150 m3/día	12	17
Pre. SR	800 m2/día	8	11
Col. Base	80 m3/día	15	21
Soleras tipo A	160 ml/día	13	18
Imprimación	1000 m2/día	6	9
Binder	1000 m2/día	6	9
Riego de liga	1000 m2/día	6	9
Carpeta Rodado	1000 m2/día	6	9

-Rendimiento y Plazos

Elaboración propia, Datos de referencia Bitumix S.A

CONSTRUCCIÓN EN ASFALTO

Duración total: 45 Días (1,5 meses)

CONSTRUCCIÓN EN ASFALTO

Costos

Para el cálculo de los costos en ambos materiales se usaron los precios vigentes en Constructora de Pavimentos Asfalticos Bitumix S.A, una de las constructoras de pavimentos más granes de Chile, y un coso indirecto de \$30.000.000 por mes en base a una obra de este tipo y volumen.

CONSTRUCCIÓN EN ASFALTO

Descripción	unidad	Cantidad	P.Unitario		Total
Excavación	m3	1800	\$ 10.300	\$	18.540.000
Preparación de Subrasante	m2	6000	\$ 700	\$	4.200.000
Sum. Y colocación base (e:0,15 m)	m3	1200	\$ 18.000	\$	21.600.000
Sum. Y coloc. De Soleras	mi	2000	\$ 9.800	\$	19.600.000
Imprimación asfaltica	m2	6000	\$ 520	\$	3.120.000
Carpeta Binder e: 0,05 m	m2	6000	\$ 5.950	\$	35.700.000
Riego de Liga	m2	6000	\$ 430	\$	2.580.000
Carpeta asfaltica e:0,05 m	m2	6000	\$ 6.475	\$	38.850.000
		Total Costo	Directo	\$	144.190.000
		Total Costo	Indirecto	\$	45.000.000
COSTO TOTAL DE EJECUCIÓN DE OBRA					189.190.000

Elaboración propia, Datos de referencia Bitumix S.A

CONSTRUCCIÓN EN HORMIGÓN

-Cubicación:

Descripción	unidad	Cantidad
Excavación	m3	1800
Preparación de Subrasante	m2	6000
Sum. Y colocación base (e:0,15 m)	m3	900
Sum. Y coloc. De Soleras	ml	2000
Sum. Y coloc. Hormigón calzada HI	m2	6000

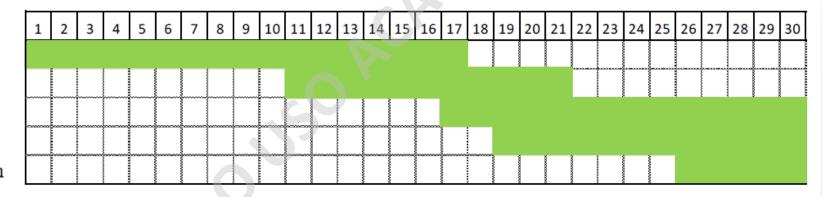
-Rendimiento y Plazos

	Rendimiento	Plazo en dias	Plazo en dias
Pav. Hormigón		Trabajados	corridos
Excavación	150 m3/día	12	17
Pre. SR	800 m2/día	8	11
Col. Base	80 m3/día	11	16
Soleras tipo A	160 ml/día	13	18
Calzada Hormigón	233 m2/día	26	36

Elaboración propia, Datos de referencia Bitumix S.A

CONSTRUCCIÓN EN HORMIGÓN

-Gantt:


Excavación

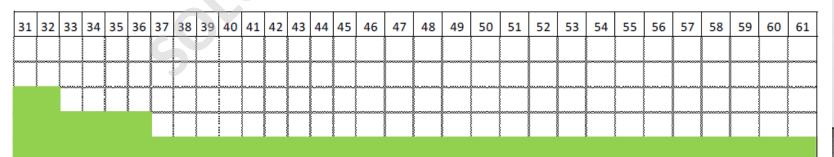
Pre. SR

Col. Base

Soleras tipo A

Calzada Hormigón

Excavación


Pre. SR

Col Base

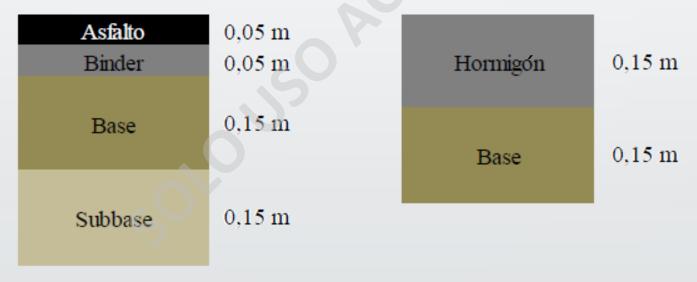
Soleras tipo A

Calzada Hormigón

Duración total: 61 Días (2 meses)

Elaboración propia, Datos de referencia Bitumix S.A

CONSTRUCCIÓN EN HORMIGÓN


Descripción	unidad	Cantidad P.Unitario	Total		
Excavación	m3	1800 \$ 10.300	\$ 18.540.000		
Preparación de Subrasante	m2	6000 \$ 700	\$ 4.200.000		
Sum. Y colocación base (e:0,15 m)	m3	900 \$ 18.000	\$ 16.200.000		
Sum. Y coloc. De Soleras	ml	2000 \$ 9.800	\$ 19.600.000		
Sum. Y coloc. Hormigón calzada HF5	m2	6000 \$ 15.750	\$ 94.500.000		
		Total Costo Directo	\$ 153.040.000		
		Total Costo Indirecto	\$ 61.000.000		
COSTO TOTAL DE EJECUCIÓN DE OBRA \$ 214.040.000					

Elaboración propia, Datos de referencia Bitumix S.A

 En este caso, donde las condiciones de terreno contaban con un CBR mayor a 20%, el asfalto es claramente una mejor opción tanto en plazo como en costo:

 Asfalto	(5)	Hormigón
45 días	Plazo	61 días 35,5% mas lento
\$189.190.000	Costo	\$214.040.000 13% mas caro

 Ahora bien, si el contexto fuera distinto y el terreno donde se ejecutará la calzada contara con un CBR entre un 13-20%, la situación seria la siguiente:

En el caso del Hormigón se mantiene la misma estructura, por ende,
 mantiene plazo y costo. En el caso del Asfalto la situación es la siguiente:

Asfalto	ر 0	Hormigón
61 días	Plazo	61 días
3,5% mas caro \$221.585.000	Costo	\$214.040.000

CONSTRUCCIÓN DE CALZADAS ASFÁLTICAS EN URBANIZACIONES: Fortalezas del Asfalto en la ejecución de Calzadas

- Fácil y rápida ejecución
- Fácil y rápida mantención
- Reutilizable

- Dispersión del agua de la superficie
- Resistente al derrape
- Flexible

CONSTRUCCIÓN DE CALZADAS ASFÁLTICAS EN URBANIZACIONES: Debilidades del Asfalto en la Ejecución de Calzadas

- Durabilidad
- Resistencia
- Deformabilidad

- Contaminación
- Reflexión de la luz

CONSTRUCCIÓN DE CALZADAS ASFÁLTICAS EN URBANIZACIONES: Sistema de Calidad

- Procesos que conforman el Sistema de Gestión de Calidad
 - Procesos de Gestión de Calidad
 - Procesos operativos
- Aseguramiento de la Calidad
 - Control de los Procesos
 - Inspección, Control y Ensayo
 - Control de Equipos de Medida, Inspección y Ensayo (EIMES)
- Funcionamiento y documentación del sistema de calidad en obra
 - Procedimientos Operativos y/o Instrucciones de Trabajo
 - Protocolos de Construcción
 - Informes de Producto No Conforme (NC) y Acciones Correctivas (AC)

Registros de Calidad

- Protocolos de Construcción.
- Planos de Construcción.
- Protocolos de Topografía.
- Especificaciones Técnicas.
- Listas de Chequeo o Verificación.
- Reportes de No conformidades.
- Registros de Acciones Correctivas y Preventivas.
- Certificados de dosificaciones para el caso de los hormigones.
- Programas de Construcción.
- Listado de Proveedores Calificados.

CONSTRUCCIÓN DE CALZADAS ASFÁLTICAS EN URBANIZACIONES: Conclusiones

- Evidencia demuestra que una calzada de asfalto presenta importantes ventajas por sobre una de otro material
- La construcción debidamente especificada en la normativa vigente en nuestro país para obras de diversa escala
- Normativa cumple el rol de orientar

CONSTRUCCIÓN DE CALZADAS ASFÁLTICAS EN URBANIZACIONES: Conclusiones

Ventajas

Buena unión y cohesión entre agregados

Impermeabiliza la estructura del pavimento

Estructura de pavimento con características flexibles

Costo y programación

Rápida puesta en marcha sin necesidad de aditivos

CONSTRUCCIÓN DE CALZADAS ASFÁLTICAS EN URBANIZACIONES: Conclusiones

Desventajas

Falta de conocimientos con relación a sus aplicaciones

Costo y programación este sujeto a un factor externo como lo es el CBR

· Limitaciones de la Investigación

Gran cantidad de subtemas que están relacionados al tema central

Difícil acceso a los antecedentes vinculados al asfalto en nuestro país

CONSTRUCCIÓN DE CALZADAS ASFALTICAS EN URBANIZACIONES

Proyecto de Título para optar al Título de Constructor Civil

Estudiante: Rosa Cáceres Navarrete

Profesor guía: José Francisco Benavides Núñez