

DEFORMACIÓN INTERNA DEL PLUTÓN SAN GABRIEL (CHILE CENTRAL) REGISTRADA POR ENCLAVES MÁFICOS: RELACIÓN ENTRE EL MECANISMO DE CONSTRUCCIÓN, DIVERSIFICACIÓN COMPOSICIONAL Y DEFORMACIÓN TECTÓNICA

Memoria entregada a la Universidad Mayor en cumplimiento de los requisitos para optar al Título de Geólogo

BENJAMÍN ANDRÉ PIZARRO ACUÑA

PROFESOR GUÍA: ITALO JOAQUÍN PAYACÁN PAYACÁN

MIEMBROS COMISIÓN MATÍAS PEÑA GÓMEZ DR. FRANCISCO JAVIER GUTIÉRREZ FERRER SANTIAGO, CHILE

ABRIL, 2019

SOLO 1350 ACADIEMICO
SOLO 1350 ACADIEMICO

Resumen.

Los plutones pueden presentar múltiples formas y tamaños dependiendo del escenario donde se genera el emplazamiento y del volumen del magma, además de condicionantes reológicas. Estos cuerpos ígneos pueden registrar deformaciones internas como es el caso del plutón San Gabriel los que pueden resultar de una superposición de fenómenos tectónicos y magmáticos en distintos tiempos, es por esto que mediante este trabajo de cuantificación, caracterización petrológica y distribución de enclaves máficos se determinara cual fue el origen de la deformación.

El plutón San Gabriel corresponde a un plutón zonado litológicamente (Diorita – Monzogranito) de edad miocena, el cual se encuentra ubicado en la Cordillera de los Andes de Chile central, en el sector del Cajón del Maipo. Este presenta una geometría elongada con orientación preferencial N20°O, con 16 km de largo, 2,5 km de ancho y exposición vertical de por lo menos 1,4 km. El ascenso y emplazamiento del plutón San Gabriel se asocia a una serie de estructuras tectónicas con dirección N-S, e intruye sucesiones volcánicas y volcanosedimentarias de las formaciones Abanico y Farellones (Eoceno-Oligoceno y Mioceno, respectivamente).

Estudios recientes han determinado que este cuerpo se divide en unidades definidas por su composición, contenido y tamaño de cristales, variando desde una composición ácida en las partes centrales a una más intermedia hacia los bordes. Además, presenta diques y enclaves máficos.

Este estudio se basó en los enclaves máficos y sus características petrográficas: índice de color, tamaño, morfología, textura, grado de cristalinidad, composición y orientaciones preferenciales de estos. En el plutón San Gabriel los enclaves presentan una morfología sub esferoidal a elipsoidal, con bordes subredondeados a redondeados, con una composición promedio entre dioritas a tonalitas, de textura porfirica a afanítica con un tamaño relativo de cristales entre 1 mm a 5 mm.

Finalmente se pudo determinar la orientación y forma de los enclaves máficos en 2 y 3 dimensiones y con los estudios petrográficos se pudo determinar si la deformación asociada corresponde a un proceso sinplutónico o a un proceso tectónico. En el caso de este estudio se determinó que la deformación de los enclaves fue originada por la dinámica interna del reservorio magmático

A mis padres y abuelos, Gracias...

Agradecimientos

En primer lugar, quiero agradecer a mis padres quienes me guiaron, ayudaron y brindaron una buena base educacional, lo cual me permitió llegar a esta importante etapa, agradezco también a los profesores de los colegios Blas Cañas y del INBA quienes supieron darme buenas enseñanzas y motivarme para así seguir el camino que elegí.

También me gustaría agradecer a las personas que conocí durante la etapa universitaria, a mi amigo Seba el cual ahora está de misionero en Brasil. A los profesores de la u que me motivaron seguir mi camino y que rama de la Geología seguir especializándome a futuro.

Agradezco también a Italo y Matias Peña, mis profes guía de la memoria, gracias a sus conocimientos, apoyo, además del financiamiento en terrenos (Proyecto FONDECYT 1180577), y críticas constructivas me permitieron elaborar y desarrollar este trabajo de una manera óptima, también agradezco a Francisco Gutiérrez quien nos permitió acceder a su taller personal y herramientas, además nos orientó sobre cómo preparar las muestras y dejarlas listas para su posterior estudio.

Finalmente agradezco a mis abuelos que si bien ya no se encuentran acá ellos fueron un pilar fundamental en mi desarrollo personal y también a los familiares que me desearon lo mejor en este proceso.

Contenido

1	In	troducción y antecedentes	13
	1.1	Antecedentes sobre los reservorios de magma	13
	1.1	.1 Mecanismos de emplazamiento y diferenciación de reservorios de magma	13
	1.1	.2 Deformación registrada en cuerpos plutónicos	15
	1.2	Enclaves máficos y procesos magmáticos.	16
		Clasificación de enclaves.	17
		.1	
	1.2	.2 Génesis de los enclaves	18
	1.2	.3 Antecedentes sobre la inferencia de procesos magmáticos y estructurales a p	artir
	de la c	cuantificación y distribución de enclaves máficos	21
	1.3	¿Por qué el Plutón San Gabriel?	25
	1.4	Hipótesis	26
	1.5	Objetivos.	
	1.5	.1 General	26
	1.5	.2 Específicos.	27
	1.6	Metodologías	27
	1.7	Ubicación y vías de acceso	29
2	A	ntecedentes geológicos del Plutón San Gabriel	31
	2.1	Marco geodinámico.	31
	2.2	Estratigrafía y evolución geológica.	32
	2.3	Antecedentes petrológicos del Plutón San Gabriel.	34
	2.4	Petrografía plutón San Gabriel	36
3	Pe	etrografía y composición de los enclaves máficos	38
	3 1	Introducción	38

	3.2	Me	todología	. 38
	3.3	Pur	ntos de muestreo	. 38
	3.4	Car	racterización morfológica y petrográfica de los enclaves máficos	. 41
	3.5	Sec	eción delgada	. 44
	3.5	5.1	Minerales primarios	. 45
	3.5	5.2	Minerales secundarios	. 46
4	Ι	Distr	ibución espacial y orientación preferencial de enclaves máficos	. 48
	4.1		roducción.	
	4.2	Me	todologías	. 48
	Cálc	ulo d	le elipsoides de anisotropía basados en la orientación y forma (3D)	. 51
	4.3	Dis	stribución espacial de los enclaves máficos.	. 52
	4.4	Ori	entación de los enclaves máficos.	. 54
	4.5	Ori	entación preferencial de enclaves máficos: Elipsoides de anisotropía basados e	n la
O1	rientac	ión <u>y</u>	y forma	. 56
	4.5	5.1	Definición de parámetros	. 56
	4.5	5.2	Parámetros de forma de los elipsoides de orientación	. 57
	4.5	5.3	Parámetros de orientación de los elipsoides.	. 62
	4.6	Alg	gunas consideraciones	. 65
5	Ι	Discu	ısión	. 69
	5.1	Intr	roducción	. 69
	5.2	Géı	nesis de los enclaves máficos	. 69
	5.2 Gabri		Procesos magmáticos asociados a la generación de enclaves en el plutón 69	San
	5.2	2.2	Relación de deformación y génesis de los enclaves máficos	. 73
	5.2	2.3	Evidencias de enfriamiento y orden de cristalización en enclaves máficos	. 75

5.3	Origen de la deformación registrada por los enclaves máficos del plutón San Gabriel. 78
5.4	Geometría del Plutón San Gabriel
6 (Conclusiones84
6.1	Recomendaciones
	Referencias 87
8 A	Anexos
	Índice de figuras
Figura	1. Procesos de diferenciación y ascenso magmático. Griem (2018)
Figura	2. Tipos de enclave respecto al origen del material que lo conforma: a) Xenolito, b)
enclave íg	neo y c) Concentrado microgranular
Figura	3. Esquema de una cámara magmática indicando la generación de enclaves
(Vernon,1	983)
Figura	4. Modelos que explican la formación de enclaves a partir de la intrusión de magma
básico (Fr	ost y Mahood, 1987): a) Intrusión de bajo volumen de magma básico, b) Intrusión de
magma bá	sico en un reservorio parcialmente cristalizado, c) Intrusión de magma y d) Intrusión de
diques bás	sicos en un reservorio cristalizado
Figura	5. Inestabilidades gravitacionales (Castro et al., 2008) debido a la intrusión de origen
ácido sobr	re un reservorio básico
Figura	6. a) Zona de estudio complejo Lago della Vacca y sus respectivas unidades, b) Modelo
en el cual	se explica el estado inicial de un enclave máfico y como este se ve afectado por la
inyección	de pulsos magmáticos de origen ácido, (Caricchi et al., 2012)
Figura	7. Proyección de la orientación y ubicación espacial de los enclaves máficos en el
complejo	plutónico Illapel. (Varas, 2011), los stereonet representan el rake de orientación de los
enclaves re	especto a la roca de caja
Figura	8. Ubicación del complejo plutónico Santo Domingo, Chile. Deformación de los enclaves
máficos pi	roducto de esfuerzos asociados a tectónica, Webber et al., (2015)

Figura 9. a) Esquema explicativo metodología para la medición de orientaciones de enclaves
máficos, b) Cálculo del rake mediante el software JMicrovision
Figura 10. Ubicación plutón San Gabriel
Figura 11. Configuración tectónica, tasas de subducción y segmentos tectónicos de Chile,
Maksymowics, 2015
Figura 12. Mapa geológico zona de estudio. Extraído de Fock (2005)
Figura 13. Contacto del plutón San Gabriel con la formación. Farellones de acuerdo a Fock
(2005), cara oeste, este y norte del plutón
Figura 14. Complejo plutónico El Teniente, extraído de Kay et al., (2005). En colores se pueden
observar los principales plutones en el área de estudio: plutón San Gabriel (rojo), batolito La Obra
(naranjo) y plutón La Gloria (amarillo)
Figura 15. Unidades plutón San Gabriel, Payacán et al., (en prep) - Lithos
Figura 16. Sectores de muestreo plutón San Gabriel, respecto a las unidades definidas por
Payacán et al (en prep) – Lithos
Figura 17. Gráfico de barra y circular que representan la frecuencia de cada tipo de enclave
máfico en el área de estudio
Figura 18. Tipos de enclaves máficos previamente descritos respecto a su predominancia por
sector y su ubicación presentes en el plutón San Gabriel. Unidades petrográficas tomadas de
Payacán et al. (en prep.)
Figura 19. Relación de tamaño y tendencias de enclaves (eje mayor / eje menor (cm)) 43
Figura 20. a) 19SGI0202, nic x, 4x. Cristal de plagioclasa de 3 mm con macla simple con
cristales de cuarzo (<0,1mm). b y c) 19SGI1002, nic x, 4x. Diorita con
textura intergranular con presencia de plagioclasa, anfibola y biotita.
19SGI2201, nic x, 20x. Plagioclasas con presencia de maclas simples y polisintéticas y presencia
de cúmulos de anfíbola. e) 19SGI0101, nic x, 4x. Cristal de anfíbola alterado a clorita,
muestra con textura intergranular(plagioclasas). f) 19SGI0601, nic x, 4x.
Cristales de plagioclasa de gran tamaño, en la parte superior se observan cristales de anfibola
alterados. g) 19SGI0202, nic x, 4x. Cristal de anfibola reemplazado por biotita. h) 19SGI0301,
nic x,4x cumulo de cristales de piroxeno inmersos en cristales de plagioclasas

Figura 21. Enclaves máficos observados en terreno: a y b) enclaves ovalados cristalinos oscuros,
c) enclave máfico circular microcristalino y d) enclaves máficos microcristalinos elipsoidales 49
Figura 22. Cálculo del rake mediante el software JMicrovision
Figura 23. Variaciones de los métodos analíticos de Robin y Shan para determinar la orientación
y forma de los enclaves máficos para el sector 19SGI01, a la izquierda gráfico de Flinn (escala
logarítmica), a la derecha gráfico de Nadai.
Figura 24. Concentración y distribución de enclaves máficos en el plutón San Gabriel, respecto
a las unidades definidas por Payacán et al (en prep) – Lithos
Figura 25. Gráfico de concentración de enclaves por sector, el area por sector comprende un
área de 4 m2
Figura 26. Gráficos polares de los datos obtenidos durante la campaña de terreno, la leyenda de
la derecha representa la concentración total o tendencia en la cual los enclaves se encuentran
distribuidos
Figura 27. a) Gráfico de Nadai (Nadai, 1950) el cual índica la forma de los enclaves máficos en
cada sector estudiado, en este caso los enclaves máficos presentan forma prolatas, triaxiales y en
la mayoría estos tienen forma oblata, elaboración mediante el software <i>Ellipsefit</i>
Figura 28. Gráfico de Flinn (escala logarítmica) (Flinn, 1958) el cual representa los grados de
anisotropia de cada sector estudiado, elaboración mediante el software Ellipsefit
Figura 29. Forma de los enclaves máficos presentes en el plutón San Gabriel. Unidades
petrográficas tomadas de Payacán et al. (en prep.)
Figura 30. Foliación de los enclaves máficos presentes en el plutón San Gabriel. Unidades
petrográficas tomadas de Payacán et al. (en prep.)
Figura 31. Lineación de los enclaves máficos presentes en el plutón San Gabriel. Unidades
petrográficas tomadas de Payacán et al. (en prep.)
Figura 32. Red estereográfica la cual muestra la orientación de los ejes máximos, intermedios y
mínimos de los 24 sectores estudiados, elaborada mediante el software Stereonet
Figura 33. Proyección estereográfica de la orientación de los elipsoides de anisotropía obtenidos
por la orientación preferencial de enclaves máficos en el plutón San Gabriel, parte norte. Unidades
petrográficas tomadas de Payacán et al. (in prep.).

Figura 34. Proyección estereográfica de la orientación de los elipsoides de anisotropía obtenidos
por la orientación preferencial de enclaves máficos en el plutón San Gabriel, parte centro sur.
Unidades petrográficas tomadas de Payacán et al. (in prep.).
Figura 35. Forma y orientación de los enclaves máficos presentes en el plutón San Gabriel.
Unidades petrográficas tomadas de Payacán et al. (en prep.), orientaciones de los enclaves respecto
al trend de los ejes mayores. 67
Figura 36. Muestra de mano sector 19SGI0201, correspondiente a la transición entre el
monzogranito (Unidad P, Payacan et al., (en prep)) y enclave máfico
Figura 37. Diferentes etapas de hibridación en la que se forman los enclaves máficos, respecto
al grado de cristalinidad que presente el magma ácido durante la inyección de un magma básico
(Barbarin et al., 1992)
Figura 38. Modelo de génesis de la zona más representativa del plutón San Gabriel (cara sur)
basado en el modelo petrográfico de Payacán et al., (en prep) y en la estratigrafía de Fock et al.,
(2006), En este modelo se explica la relación de temporalidad de los grupos de enclaves
previamente definidos
Figura 39. Cortes escaneados sectores 19SGI1001 (a) y 19SGI1201 (b), como se puede observar
en ningún caso se observan foliación y lineación de cristales a escala macroscópica y microscópica
Figura 40. a) Enclaves plegados con material leucocratico concentrado, b) Enclave en forma de
boudinage producto de deformación tectónica, c) Enclave registra desplazamiento sinestral
asociado a zonas de cizalle y d) Cristal de biotita deformado. Figura extraída y modificada de
Webber et al., (2015)
Figura 41. Cúmulos de piroxeno presente en el corte transparente pulido del sector 19SGI0301,
nicoles x
Figura 42. Corte transparente pulido sector 19SGI0202 nicoles x, en el cual se puede observar
el mineral que cristaliza en una etapa final (Cuarzo)
Figura 43. Modelo de transporte helicoidal por el cual el magma asciende propuesto por Webber
et al., (2015)
Figura 44. Modelo conceptual en el cual se explica cómo es controlada la forma del Plutón San

costra a medida que el plutón cristaliza, de igual manera se muestra como los enclaves so	on
orientados respecto a la forma del Plutón y de la dinámica del magma al interior, finalmente	se
muestra como el interior de los enclaves máficos no presentan ningún patrón de orientacio	óп
respecto a los cristales (lineación o foliación)	81
Figura 45. Modelo análogo en el cual se explica la forma que obtiene un cuerpo ígneo, respec	to
a las tasas de inyección magmática, como se puede observar si la tasa de inyección es lenta,	el
plutón presentara una forma más elongada, mientras que, si la tasa de inyección es rápida, el pluto	ón
presentara una forma circular, figura extraída de Montanari, D. et al., (2010)	83
Índice de tablas	
Tabla 1. Posición de los puntos de muestreo, en amarillo aquellos sectores de muestreo en le	os
que no se encuentran enclaves máficos.	38
Tabla 2. Ejemplo cuantificación y caracterización enclaves máficos en el plutón San Gabrio	
	54
Tabla 3. Declinación e inclinación máxima (k máx), intermedia (k int) y mínima (k mí	n)
entregadas por el software Ellipsefit	52
Tabla 4. Caracterización y cuantificación general de los enclaves máficos por sector muestreac	do
(concentración respecto a parámetros explicados en capítulo 3 y 4)	58

1 Introducción y antecedentes.

1.1 Antecedentes sobre los reservorios de magma.

Los plutones corresponden a cuerpos intrusivos de origen ígneo formados cuando el magma (mezcla compuesta por gases, roca fundida, cristales y fluidos) se enfría y cristaliza dentro de la corteza terrestre. Estos cuerpos pueden presentar formas concéntricas, alargadas, elongadas, entre otras y su escala depende de las multiples inyecciones magmáticas y del volumen del reservorio magmático. Dentro de esto se pueden diferenciar cuerpos ígneos respecto a su forma y tamaño específicos, como es el caso de batolitos, stocks, plutones.

Conocer la génesis del plutonismo nos permite inferir las etapas y los procesos de transporte del magma a través de la corteza. A medida que el magma asciende se va enfrentando a diferentes condiciones reológicas, ya que avanza desde los niveles profundos de la corteza (comportamiento dúctil a semidúctil) a los niveles superiores de la corteza (comportamiento frágil). Es en esta transición donde comienzan a ocurrir los procesos de diferenciación magmática, y emplazamiento magmático, generando un impacto termal y reológico en las roca de caja mediante procesos como fracturamiento, fusión parcial, metamorfismo, reacciones hidrotermales, entre otros.

1.1.1 Mecanismos de emplazamiento y diferenciación de reservorios de magma.

La estructura interna de los plutones permite inferir los procesos fluido y termodinámicos que pudieron haber ocurrido durante la fase fundida y su posterior enfriamiento. El proceso de construcción de reservorios de magma está determinado por dos etapas: el transporte de magma a través de la corteza y el emplazamiento. Se entiende el transporte de magma como el proceso en el que un magma se traslada verticalmente en dirección hacia la superficie, Petford (2000) menciona que este proceso se encuentra dividido por 2 subprocesos diferenciándose principalmente por la escala en la que actuan, 1) Segregación mecánica, corresponde al proceso de transporte en el que un magma se traslada en una escala centimétrica a decimétrica respecto a las diferencias de viscosidad y al contenido de H_2O y 2) Ascenso, corresponde al proceso en el que el magma asciende verticalmente a escalas kilométricas. Mientras que el emplazamiento se entiende como el mecanismo desde la generación de espacio hasta el último enfriamiento del reservorio ya sea lateral

o vertical, favoreciendo su acumulación en la corteza (Peña., 2004). Los mecanismos de emplazamiento y ascenso de magma hacia la corteza corresponden a: 1) diapirismo, el que de acuerdo a Paterson et al., (1995), corresponde a un mecanismo de emplazamiento magmático en el cual el magma asciende por la corteza inferior, la cual es más dúctil que la corteza superior, lo que provoca la deformación dúctil de la corteza circundante. Cuando el magma alcanza la transición de la corteza dúctil/frágil, la buoyancia no puede sustentar el emplazamiento (Vigneresse, 1995b.), por lo que podría ocurrir 2) ballooning, proceso que ocurre en las zonas frágiles de la corteza terrestre y corresponde a la generación de un reservorio magmático debido al ascenso del magma, el cual produce el abombamiento de la roca de caja debido al contraste reológico (dúctil/frágil) del magma respecto a la corteza. Otro mecanismo es el 3) dyking, que corresponde al proceso en el cual el magma asciende por pequeñas intrusiones o pulsos, los que posteriormente se mezclan generando cuerpos de mayor dimensión (Glazner et al., 2004). 4) el stoping corresponde al mecanismo en el cual el magma genera fracturas o utiliza fracturas pre-existentes y aisla bloques de la roca de caja, haciendo que estos se hundan en el magma, generando la presencia de xenolitos. El tipo de emplazamiento magmático que ocurra se encuentra relacionado a las condiciones mecánicas en las cuales el magma se esté emplazando y del volumen que el reservorio presente (Winter, 2001).

Dentro de los reservorios magmáticos ocurren cambios estructurales, texturales, composicionales y mineralógicos. Los procesos encargados de generar estas variaciones son aquellos relacionados con procesos de diferenciación y diversificación magmática (Figura 1). El crystal settling es el mecanismo en el cual las especies minerales de una composición máfica, además de la plagioclasa cálcica, cristalizan primero y decantan al fondo del reservorio, lo que provoca que se generen cúmulos cristalinos de esta composición, mientras que hacia la región somera exista un mayor contenido de especies minerales félsicas, debido al empobrecimiento del fundido respecto al contenido de especies máficas. Esto genera una estratificación, en la que las capas de minerales de carácter máfico están bien diferenciadas de las de carácter félsico. Debido a procesos convectivos en conjunto con el crystal settling, se puede generar el crecimiento de capas o estratificación en las paredes, es decir, un crecimiento cristalino desde afuera hacia el centro del reservorio, quedando un centro o techo fundido más diferenciado (Winter, 2001).

Los procesos de mezcla de magmas implican la hibridación entre dos magmas y pueden ocurrir por la unión de dos reservorios magmáticos, automezcla convectiva o por asimilación magmática

en la que el magma funde los fragmentos de roca de caja que caen en él. Este último mecanismo provoca que la composición del magma cambie, además que la temperatura del reservorio se equilibre termodinámicamente de acuerdo con las características de ambos magmas. En el caso del *mingling*, o mezcla heterogénea de magmas asociada a diferencias reológicas como la viscosidad, densidad y temperatura, se originan morfologías como enclaves o diques sinplutónicos.

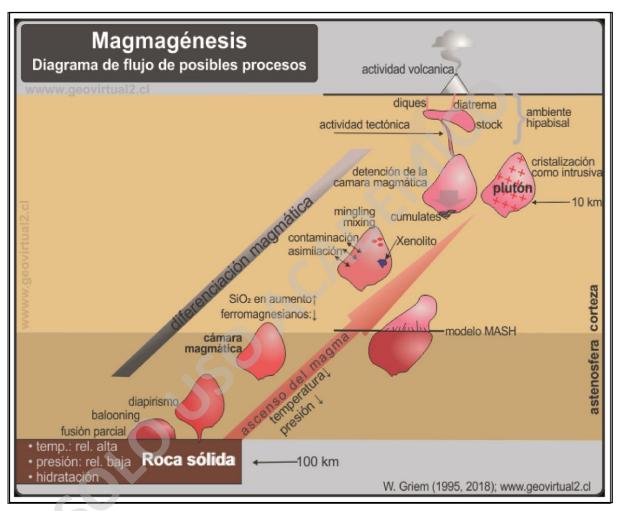


Figura 1. Procesos de diferenciación y ascenso magmático. Griem (2018).

1.1.2 Deformación registrada en cuerpos plutónicos.

La deformación presente en plutones puede estar registrada por ejemplo en la lineación y foliación de cristales, orientación preferencial de enclaves, fracturas o plegamientos de cristales, zonas de metamorfismo, diques, estratificaciones magmáticas, anisotropía de susceptibilidad magnética (AMS), entre otras. La deformación puede provenir de dos principales procesos, (1) la

deformación generada por procesos netamente magmáticos asociados a la dinámica, diversificación magmática y los procesos convectivos del magma, así como también (2) debido a procesos de deformación regional y local de la corteza, asociada a fuerzas externas al reservorio.

Respecto a la deformación asociada de plutones Paterson et al., (1998) indica que el ascenso y posterior emplazamiento de los magmas no requiere necesariamente que durante la construcción de la cámara magmática exista una zona activa de extensión, asociada a deformación tectónica, ya que el magma puede avanzar por la corteza a través de zonas de debilidad, por ejemplo fallas, fracturas, o a medida que va fusionando parte de la corteza, generando una asimilación de ambos fundidos (cortical y magma). Cabe destacar que la intensidad de la fusión de la roca de caja dependerá del sustento y capacidad termal del magma, provocando que se generen "aureolas" en las que existirá una deformación de la roca de caja. Es decir, puede ocurrir deformación en los plutones asociada a procesos tectónicos compresivos, o únicamente a procesos mecánicos al interior del reservorio magmático y su posterior incidencia en la roca de caja, además esta deformación presentaría una mayor preferencia en zonas asociadas a debilidades (fallas, fracturas, etc...) por las que el magma ascendió y emplazo posteriormente.

1.2 Enclaves máficos y procesos magmáticos.

Los enclaves máficos corresponden a agregados minerales generalmente correspondientes a piroxeno, anfíbola, biotita y plagioclasa incluidos en rocas de composición intermedia a ácida (granodioritas, tonalitas, cuarzodioritas y similares). Su génesis se asocia a procesos de emplazamiento, ascenso y diferenciación magmática. Ejemplo de ello es la inyección de magma básico, de mayor temperatura, a un magma de composición ácida y menor temperatura (Hodge et al., 2012). Por equilibrio térmico, el magma básico se tiende a solidificar, provocando que fragmentos de composición básica queden suspendidos en el magma ácido. De acuerdo a Vernon (1983), respecto a su composición, estos siempre son más básicos que la roca ígnea que los alberga, producto de los contrastes reológicos entre un magma básico y un magma ácido durante la mezcla heterogénea (mingling). Presentan asociaciones mineralógicas similares a la roca que los alberga con una diferencia porcentual, los minerales máficos habituales en los enclaves máficos pueden variar composicionalmente dentro de un mismo plutón, lo que implica que pueden ser originados a partir de diferentes pulsos magmáticos o procesos de cristalización fraccionada.

1.2.1 Clasificación de enclaves.

Los enclaves máficos se pueden clasificar según diversos criterios, basados en aspectos mayormente petrográficos, los que van desde:

1) Origen del material que conforma el enclave:

- Fragmentos de rocas o xenolitos: Estos corresponden a fragmentos de roca inmersos en el fundido, la cual proviene de la interacción mecánica y termal del magma con la roca de caja. También pueden ser xenocristales, los cuales se fragmentan de las paredes del reservorio.
- Enclaves ígneos: Fragmentos redondeados a subredondeados de forma ovoide generados por el enfriamiento y posterior solidificación de un magma de composición básica. Estos pueden ser originados por cristalización fraccionada, mingling.
- Concentrados microgranulares: Minerales cristalizados tempranamente y reincorporados a un magma residual o tardío.

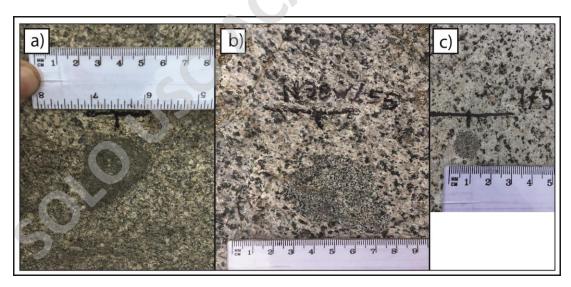


Figura 2. Tipos de enclave respecto al origen del material que lo conforma: a) Xenolito, b) enclave ígneo y c) Concentrado microgranular.

2) Morfología y tamaño:

❖ Presentan forma ovoidea, elipsoidal o circular, con bordes subredondeados a redondeados, angulares, con bordes dentados. En cuanto a tamaño son variables, y van desde algunos milímetros hasta metros.

- Estos pueden presentar grados de elongación. Los enclaves no siempre evidencian microestructuras de deformación, lo que implicaría que la elongación no siempre está relacionada a esfuerzos asociados a estructuras, sino que a una cinemática relativa de fundido y cristales (Vernon, 1983).
- De acuerdo con Vernon (1983), el grado de elongación se puede encontrar relacionado a la dirección del flujo durante la formación del plutón, o bien, a alguna deformación asociada a estructuras tectónicas (fallas, diaclasas, fracturas).

1.2.2 Génesis de los enclaves

Los enclaves máficos pueden ser originados por procesos de diferenciación magmática, como cristalización fraccionada, segregación de fundidos y fluidos, asimilación magmática y *mingling* (Vernon, (1983), Castro et al., (2008)).

Para explicar la génesis de los enclaves máficos se han diferenciado en aquellos procesos que ocurren por procesos externos en reacción con la cámara magmática y procesos internos de la cámara.

Modelos externos:

1) Inyecciones en forma de láminas básicas a lo largo de los pisos de los reservorios (Vernon, 1983).

Durante la génesis de un reservorio magmático de composición ácida, se genera la intrusión de una capa o lámina básica. La mezcla de ambos magmas no ocurre debido a las diferencias en composición (básica/ ácida), densidad (3,0 g/cm^3 (básico) y 2,2 g/cm^3 (ácido)) y viscosidad asociada al contenido de SiO_2 y cristales.

Los enclaves son generados por la interacción entre la parte ácida y básica. De modo que, cuando en la capa ácida ocurre convección, el movimiento genera el arrastre y transporte de agregados minerales máficos al fundido ácido, los cuales permanecen intactos debido a las diferencias reológicas y térmicas, (Figura 3).

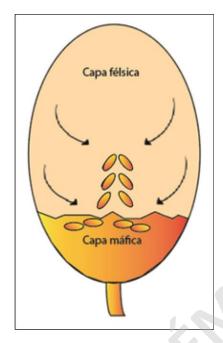


Figura 3. Esquema de una cámara magmática indicando la generación de enclaves (Vernon,1983).

2) Intrusión y separación de diques básicos en la cámara magmática (Frost y Mahood, 1987). Durante la generación de reservorios magmáticos, pueden ocurrir inyecciones en forma de

diques. Dependiendo del volumen de la intrusión y el grado de la cristalinidad del plutón, ocurren diferentes mecanismos, (Figura 4).

- a) Formación de enclaves debido a la intrusión de bajos volúmenes de magma básico: la convección en el reservorio ácido genera el transporte y arrastre de volúmenes de magma básico, originando enclaves.
- b) Intrusión de magma básico en un reservorio parcialmente cristalizado. Esta intrusión genera la formación de enclaves en las zonas internas del reservorio.
- c) Intrusión de magma básico en un reservorio cristalizado. Al ocurrir la intrusión de un magma básico a alta temperatura, genera la fusión de la roca ácida en las áreas circundantes de la intrusión, lo que genera enclaves de tamaño pequeño en un área localizada.
- d) Intrusión de diques básicos en un reservorio cristalizado. Los diques reaccionan con los fluidos intersticiales remanentes, generando una removilización e incorporación de fundido ácido.

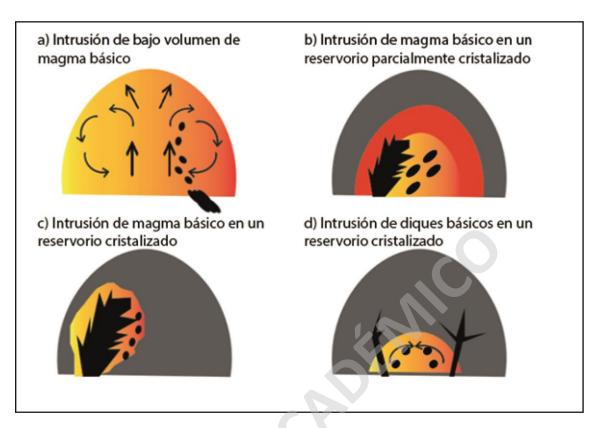


Figura 4. Modelos que explican la formación de enclaves a partir de la intrusión de magma básico (Frost y Mahood, 1987): a) Intrusión de bajo volumen de magma básico, b) Intrusión de magma básico en un reservorio parcialmente cristalizado, c) Intrusión de magma y d) Intrusión de diques básicos en un reservorio cristalizado.

3) Inestabilidades gravitacionales (Castro et al., 2008).

En primera instancia se generan inyecciones básicas generando un reservorio. Posteriormente se produce la inyección de pulsos magmáticos diferenciados de composición ácida. Esta intrusión genera una cámara magmática de mayor volumen inversamente zonada. Esto provoca que el magma básico descienda por gravedad debido a que es más denso. Los enclaves son originados por el movimiento convectivo de la intrusión ácida sobre el reservorio básico (Figura 5).

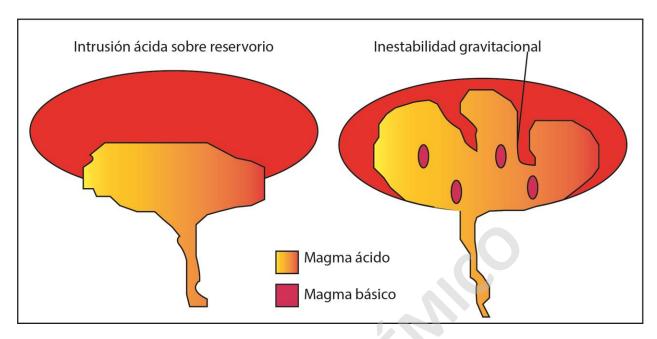


Figura 5. Inestabilidades gravitacionales (Castro et al., 2008) debido a la intrusión de origen ácido sobre un reservorio básico.

Modelos cogenéticos:

1) Material residual de la fuente (White y Chappel, 1977).

White y Chappell (1977) mencionan que los enclaves corresponden a "inclusiones microgranulares" originados por fundidos residuales que cristalizaron tardíamente, generando de este modo enclaves microgranulares compuestos en su mayoría por feldespato potásico

2) Modelo de autolito (Dodge y Kistler, 1990).

Modelo propuesto por Dodge y Kistler (1990), en el que se indica que los enclaves máficos son formados a partir de la cristalización fraccionada temprana de minerales máficos (anfíbol y biotita), los cuales precipitan del magma y posteriormente se concentran debido a propiedades mecánicas.

1.2.3 Antecedentes sobre la inferencia de procesos magmáticos y estructurales a partir de la cuantificación y distribución de enclaves máficos.

Una serie de procesos magmáticos descritos anteriormente se pueden determinar a partir de estudios consistentes en la caracterización y cuantifiación petrográfica y estructural de enclaves

máficos granulares y microgranulares, En el caso de procesos petrogenéticos y deformativos del tipo magmático, Caricchi et al., (2012) determinaron el estilo de emplazamiento del complejo plutónico Lago Della Vaca, Italia, a partir de la deformación preservada en los enclaves máficos. Basado en esta caracterización se determinó que los enclaves máficos fueron generados producto de una mezcla heterogénea de magmas o *mingling*, En un estado inicial, los enclaves máficos presentaban una forma esferoidal, la cual producto de la inyección de múltiples pulsos magmáticos se deformaron debido a la dinámica interna en el reservorio, es por ello que presentan formas elipsoidales (Figura 6).

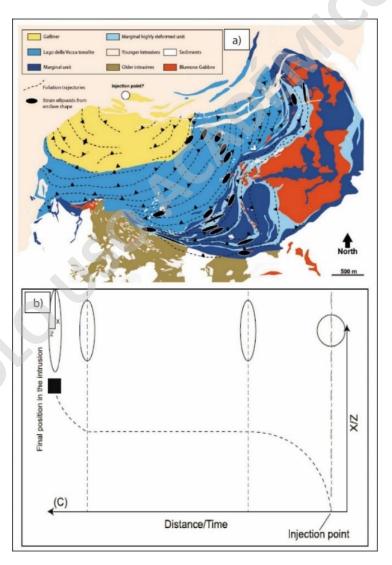


Figura 6. a) Zona de estudio complejo Lago della Vacca y sus respectivas unidades, b) Modelo en el cual se explica el estado inicial de un enclave máfico y como este se ve afectado por la inyección de pulsos magmáticos de origen ácido, (Caricchi et al., 2012).

Al igual que la publicación de Caricchi et al., (2012), Varas (2011) cuantificó y caracterizó los enclaves máficos del complejo plutónico Illapel, Chile, respecto a la petrografía, textura, índice de color, bordes de reacción, morfología, y orientaciones espaciales (Figura 7) con la finalidad de determinar las implicaciones petrogenéticas de los enclaves. Varas determinó que los magmas generadores de los enclaves ascendieron a través de fracturas, posteriormente debido a procesos de mezcla heterogénea entre magmas básicos y ácidos en conjunto a los procesos convectivos, los enclaves máficos fueron originados y distribuidos en las diferentes zonas del complejo plutónico.

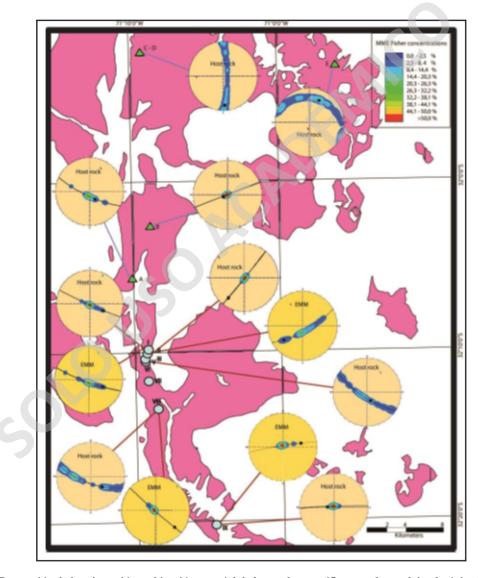


Figura 7. Proyección de la orientación y ubicación espacial de los enclaves máficos en el complejo plutónico Illapel. (Varas, 2011), los stereonet representan el rake de orientación de los enclaves respecto a la roca de caja

No obstante, en la publicación de Webber et al., (2015) determinó el tipo de deformación presente en los enclaves máficos del complejo plutónico Santo Domingo, Chile, a partir de la caracterización de la distribución y de la medición de estos respecto a los contactos con el complejo plutónico, a partir de las orientaciones y de los grados de deformación frágil y dúctil presente en los enclaves a nivel mesoscópico y microscópico se determinó que el tipo de deformación presente en los enclaves fue de origen tectónico asociado a esfuerzos del tipo extensivos y de cizalle (Figura 8), mientras que la génesis y distribución de estos fue producto de la mezcla heterogénea (mingling) entre magmas de composición básica y ácida asociados a procesos dinámicos en el reservorio.

Como se ha podido determinar existen dos tipos de deformaciones presentes en los enclaves: una de origen magmático propiamente tal, la cual es generada producto de los mecanismos internos dentro del reservorio (principalmente convección), y se encuentra evidenciada por la deformación sin afectar la foliación y lineación de los cristales a escalas mesoscópicas y microscópicas. Existe, además, una segunda deformación de origen estructural (externo al reservorio) en la que estructuras aledañas a un reservorio provocan deformaciones y fracturas en los enclaves máficos, cuya principal evidencia corresponde a fracturas en la morfología y los cristales de los enclaves, además, cambios en la lineación y foliación de los cristales a escala mesoscópica y microscópica.

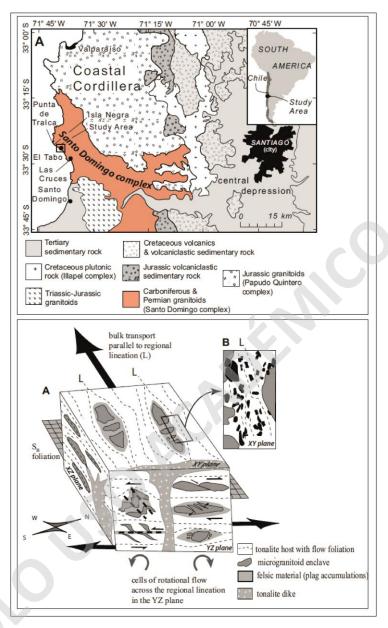


Figura 8. Ubicación del complejo plutónico Santo Domingo, Chile. Deformación de los enclaves máficos producto de esfuerzos asociados a tectónica, Webber et al., (2015).

1.3 ¿Por qué el Plutón San Gabriel?

Este estudio se enmarca en plutón San Gabriel, el cual presenta un buen estado de conservación, además de óptima exposición, lo que permite observar los bordes, techo y el área basal del intrusivo. De igual manera se conoce la litología del sector y el contexto tectónico en el cual el reservorio fue originado el cual corresponde a un contexto compresivo durante la inversión de la cuenca de Abanico y depositación sintectónica de la Fm. Farellones (Oligoceno Tardío al Mioceno

Superior) (Fock et al., 2006; Tapia, 2015; Alvarado, 2016). La caracterización y cuantificación de los enclaves máficos desarrollada durante esta investigación tiene como finalidad identificar si la deformación registrada por los enclaves corresponde a un proceso fluidodinámico propio de la dinámica convectiva interna del reservorio durante su construcción o es efecto de esfuerzos tectónicos transferidos hacia el interior de este.

1.4 Hipótesis.

En el estudio del plutón San Gabriel, los análisis petrográficos, cinemáticos y geoquímicos de enclaves máficos, permitirán evidenciar el comportamiento y dinámica del magma previo y posterior a su cristalización. Las hipótesis en las cuales el estudio se basa corresponden a: la acumulación, orientación y grado de elongación de enclaves, indicarían cambios en el dinamismo durante la fase fundida y posterior enfriamiento del plutón. Una segunda opción correspondería a la incidencia de las estructuras (fallas y pliegues) con rumbo NS presentes en el área ubicadas en los flancos Este y Oeste del plutón. El grado de elongación de enclaves y sus cambios en la fábrica cristalina podrían entregar evidencias si la deformación ocurrió durante la cristalización del reservorio en un estado dúctil o posteriormente por la acción de los esfuerzos generados por las estructuras.

1.5 Objetivos.

1.5.1 General.

El objetivo general de esta investigación es comprender el origen de la fábrica interna del Plutón a través del estudio de enclaves presentes en el plutón San Gabriel, mediante el análisis y cuantificación morfológica y petrográfica de los enclaves máficos. Se espera proponer un modelo conceptual que explique cómo se originaron los enclaves, a qué procesos se relacionan las variaciones composicionales de estos y cómo estos se relacionan con la deformación tectónica que operaba durante el emplazamiento del intrusivo.

1.5.2 Específicos.

- Determinar las variaciones de las características petrológicas de los enclaves máficos dentro del plutón San Gabriel mediante la descripción macroscópica y microscópica (cortes transparentes) detallada.
- 2) Determinar la distribución espacial y orientación preferencial de enclaves máficos preservados en el plutón San Gabriel a partir de la observación y mediciones en terreno.
- 3) Estimar valores de *strain*, a partir de la orientación y elongación de los enclaves máficos y cómo esta se distribuyó en el interior del plutón.
- 4) Identificar el tipo de deformación que habría dado lugar a la orientación de enclaves máficos y determinar su temporalidad respecto al enfriamiento del intrusivo o a la incidencia de las estructuras.
- 5) Proponer un modelo conceptual que explique la génesis de la deformación registrada por los enclaves máficos y evaluar su rol en el emplazamiento y diferenciación del reservorio de magma que dio lugar al plutón San Gabriel.

1.6 Metodologías.

Previamente a la campaña de terreno se realizó la búsqueda de bibliografía y antecedentes respecto a la génesis de enclaves en reservorios magmáticos e información relevante de la zona de estudio.

1) Campaña de terreno: Esta campaña constó de 10 días efectivos de terreno. En este se llevó a cabo el reconocimiento del plutón en diferentes zonas y la medición de orientaciones de los enclaves. Dicha orientación fue obtenida midiendo el rumbo y manteo del plano que alberga a los enclaves máficos utilizando una brújula Brunton. Los datos recopilados en terreno fueron clasificados según la morfología, índice de color, dimensiones y relaciones de contacto y tipo de roca, con el fin de determinar patrones o relaciones directas entre las orientaciones de los enclaves y sus características petrográficas o morfológicas.

Con la finalidad de realizar la proyección de los enclaves desde dos a tres dimensiones se realizó la medición del rake que forma el eje máximo del enclave respecto al plano del afloramiento que lo contiene (este ángulo puede variar entre 0° y 180° en sentido horario). Este fue medido posteriormente mediante el procesamiento de fotografías obtenidas en terreno, mediante el software Jmicrovision (Figura 9).

Adicionalmente, Se efectuó una transecta de aproximadamente 10 km en las zonas en las cuales el plutón San Gabriel se encontraba aledaño a los caminos y senderos. Las muestras fueron recolectadas con un combo y una perforadora (utilizada en paleomagnetismo), con el fin de recolectar un testigo de sondaje de aproximadamente 30 mm de diámetro. Alrededor de 30 muestras fueron enviadas al taller para generar cortes transparentes pulidos para la observación petrográfica bajo microscopio óptico (luz transmitida).

- 2) Se realizó una caracterización y descripción petrográfica a escala de muestra de mano detallada de las muestras recolectadas correspondientes a enclaves máficos. La descripción detallada de cortes transparentes se efectuó mediante los microscopios de luz polarizados del Laboratorio de Geología de la Universidad Mayor. Con estas descripciones se determinó el tipo de roca, tamaño de grano, texturas presentes, fábrica cristalina y asociaciones mineralógicas.
- 3) Análisis modal: Con los datos recolectados correspondientes a las mediciones de las orientaciones de los enclaves, en conjunto con su descripción petrográfica, se generó una base de datos estadística en el programa *Microsoft Excel*, en la cual los enclaves fueron caracterizados y cuantificados respecto al índice de color, mineralogía, textura, composición y ubicación espacial.
- 4) Análisis de *strain*. Para realizar el análisis de *strain* en los enclaves, se debe definir su forma y tamaño en dos dimensiones para posteriormente realizar una proyección en 3 dimensiones y calcular el *strain* o deformación mediante el software *Ellipse fit*.

Cabe destacar que las metodologías serán detalladas en los capítulos 3 y 4 (resultados).

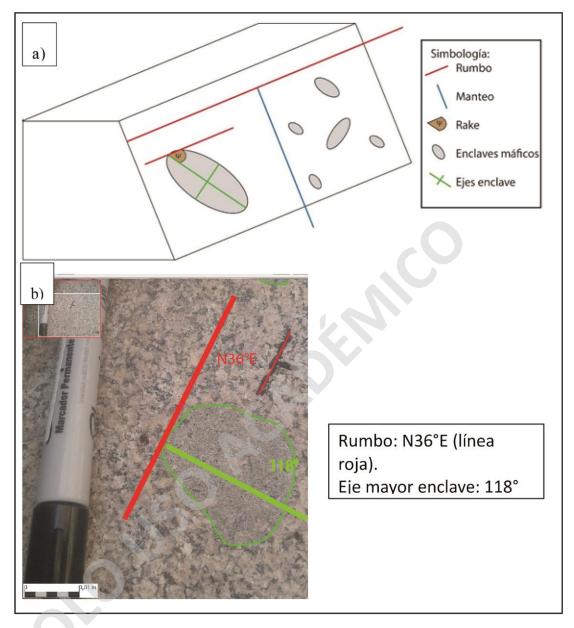


Figura 9. a) Esquema explicativo metodología para la medición de orientaciones de enclaves máficos, b) Cálculo del rake mediante el software JMicrovision.

1.7 Ubicación y vías de acceso.

El plutón San Gabriel se localiza en la comuna de San José de Maipo, provincia de Cordillera, región Metropolitana de Santiago de Chile. Está aproximadamente a 54,4 km al SE del centro de

Santiago. El acceso al área de estudio, desde Santiago y en vehículo, se realiza por el camino al Volcán, Embalse El Yeso y El Ingenio, (Figura 10).

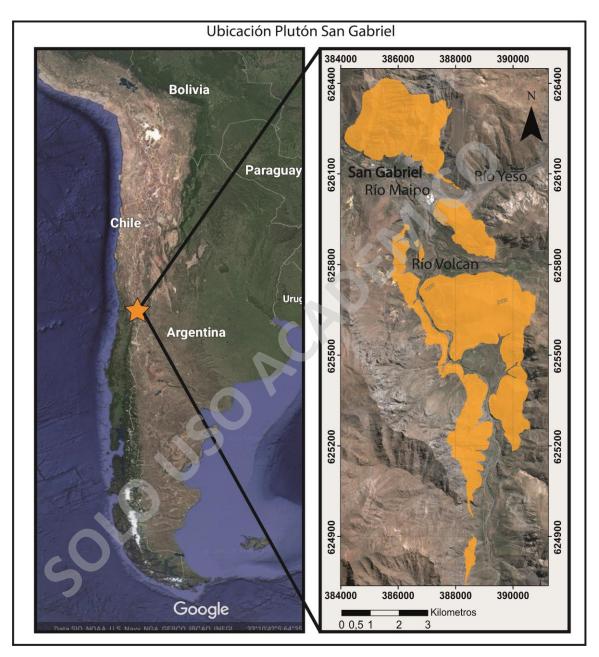


Figura 10. Ubicación plutón San Gabriel.

2 Antecedentes geológicos del Plutón San Gabriel.

2.1 Marco geodinámico.

La Cordillera de los Andes en Chile central es el producto de la interacción entre la actividad tectónica y magmática generada por la subducción de la placa de Nazca bajo la placa Sudamericana a una tasa entre 6,5- 6,8 cm/año (Khazaradze et al, 2003, Maksymowics, 2015) (Figura 11). La formación de los Andes Centrales se remonta, al menos, desde el Carbonifero (Oliveros et al., 2019) hasta el presente, mediante un proceso de subducción del tipo placa oceánica-placa continental en el margen occidental (Ramos, 1989), (Figura 11). Hacia el norte de los Andes centrales de Chile, a partir de los 33°S, comienza la subducción del *ridge* de Juan Fernández. Debido a esto se genera un cambio en el ángulo de subducción, ausencia de volcanismo somero y engrosamiento cortical (Tapia, 2015). Hacia el sur de los 33°S ocurre un cambio en el rumbo de las estructuras y los cordones montañosos.

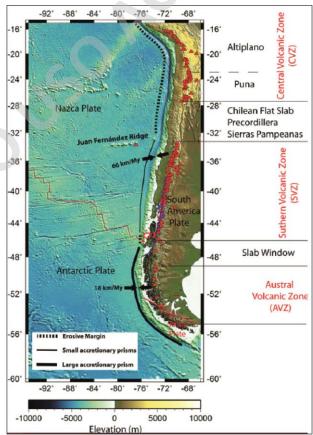


Figura 11. Configuración tectónica, tasas de subducción y segmentos tectónicos de Chile, Maksymowics, 2015.

2.2 Estratigrafía y evolución geológica.

La evolución geológica en las zonas aledañas donde el plutón San Gabriel se encuentra emplazado corresponde a etapas extensionales y compresionales que van desde el Eoceno hasta el Oligoceno Tardío, registrado en sucesiones de rocas sedimentarias y volcánicas y cuerpos intrusivos asociados, los cuales se hacen jóvenes hacia el este, debido a la migración del arco magmático.

Desde el Eoceno tardío hasta el Oligoceno tardío se desarrolló una cuenca extensional de intraarco, denominada cuenca de Abanico, desarrollada durante un régimen extensivo y correspondería
a un antearco en el cual ocurrió un adelgazamiento cortical (Cembrano et al., 2007; Armijo et al.,
2010). Posteriormente esta cuenca fue rellenada por depósitos volcánicos y sedimentarios,
originando así la formación Abanico, la cual presenta un espesor de aproximadamente 3.000 m
(Tapia, 2015).

Durante el Oligoceno Tardío la cuenca de abanico se comienza a invertir tectónicamente, debido a un régimen compresivo. Esto ocurre hasta el Mioceno Temprano (Godoy et al., 1999; Charrier et al., 2002; Fock et al 2006; Tapia, 2015). Durante la fase temprana de la inversión ocurrió la deformación, afectando principalmente a los bordes de las cuencas, generando plegamientos y fallas inversas de alto ángulo (Fock et al., 2006). Esta generación de nuevas estructuras durante la inversión permitió que las rocas fueran depositadas en una nueva cuenca originando la formación Farellones, la cual presenta un espesor de 2.500 m, y se encuentra compuesta por lavas, tobas e ignimbritas intercaladas con brechas (Thiele, 1980). Las composiciones principales de estas rocas corresponden a riolitas y andesitas, cuya procedencia corresponde al arco magmático que fue migrando hacia el Este (Thiele, 1980). La formación Farellones sobreyace en discordancia a la formación Abanico (Figura 12).

Coetáneamente durante el origen de la formación Farellones se originaron múltiples estructuras correspondientes a fallas inversas y pliegues anticlinales y sinclinales con un rumbo aproximado NS (Villela, 2015). Posteriormente, durante el Mioceno Superior, ocurrió el ascenso y emplazamiento magmático a través de estas zonas debilitadas, dando así origen a cuerpos ígneos como los plutones La Obra, Mesón Alto, San Gabriel y La Gloria.

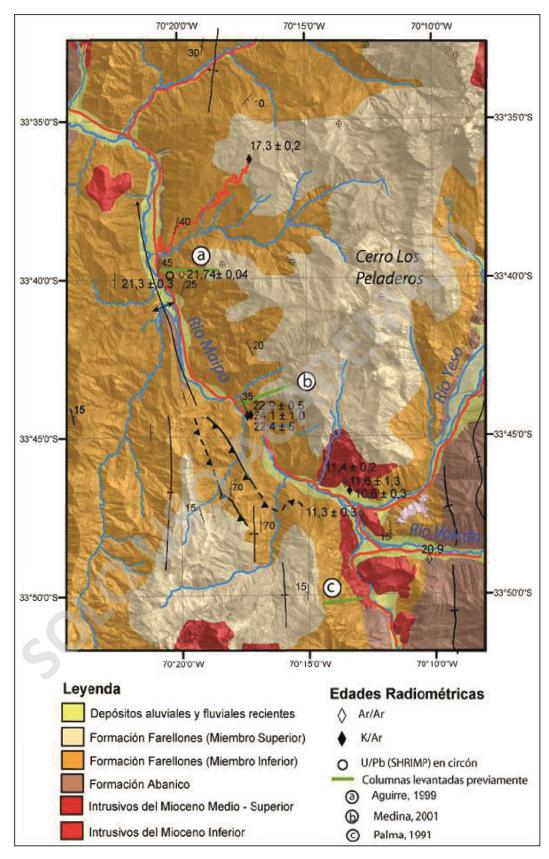


Figura 12. Mapa geológico zona de estudio. Extraído de Fock (2005).

2.3 Antecedentes petrológicos del Plutón San Gabriel.

El Plutón San Gabriel corresponde a uno de los intrusivos del Mioceno Superior (Thiele, 1980). Presenta una superficie areal expuesta de ~40 km², con un largo de 12 km y 3 km de ancho, su techo se encuentra a 3.125 m.s.n.m, este cuerpo intrusivo presenta una forma prolata con una orientación preferencial N30W (Payácan et al., (en prep)), se encuentra ubicado en la confluencia de los ríos Volcán y Yeso y se encuentra intruyendo a las formaciones Abanico y Farellones (Fock et al., 2006) (Figura 13), además está en contacto por falla con la formación Abanico (Baeza, 1999). Este presenta una composición granodoriorítica con un contenido promedio de 58% de SiO2 (Deckart et al., 2010). A partir de dataciones Ar/Ar en biotita se determinó una edad entre los 11 – 13 Ma (Kurtz et al., 1997).

Kay et al., (2005) definieron este plutón como parte del Complejo Plutónico El Teniente, (Figura 14) el que, en conjunto con el plutón La Gloria, pertenecen a una franja de intrusivos de edad miocena emplazados en una dirección preferencial N-S. Se originaron durante el proceso de inversión de la cuenca de Abanico.

Figura 13. Contacto del plutón San Gabriel con la formación. Farellones de acuerdo a Fock (2005), cara oeste, este y norte del plutón.

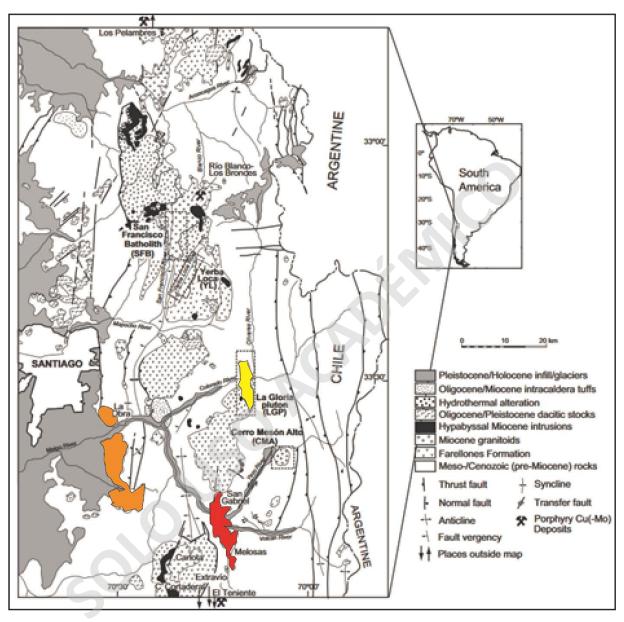


Figura 14. Complejo plutónico El Teniente, extraído de Kay et al., (2005). En colores se pueden observar los principales plutones en el área de estudio: plutón San Gabriel (rojo), batolito La Obra (naranjo) y plutón La Gloria (amarillo).

2.4 Petrografía plutón San Gabriel

Estudios recientes en el plutón San Gabriel (Payácan et al., (en prep)) han determinado que este cuerpo ígneo presenta dominios magmáticos diferenciados por el contenido de minerales y el tamaño de grano (Figura 15):

Dominio principal

Unidad interior (I)

Unidad de grano grueso (5 mm) y corresponde a una monzodiorita a cuarzo-monzogranito, compuesto por plagioclasa euhedral, feldespato potásico subhedral a anhedral, cuarzo anhedral con textura intersticial y hornblenda alterado a biotita y actinolita.

Unidad (II)

Unidad de grano medio y corresponde a un cuarzo-monzogranito, compuesto por plagioclasa euhedral, feldespato potásico subhedral a anhedral y cuarzo anhedral con textura intersticial y minerales ferromagnesianos correspondientes a hornblenda alterada a biotita y actinolita.

Unidad (III)

Unidad de grano fino (2 mm) y corresponde a un cuarzo-monzodiorita a cuarzo-monzogranito, compuesto por plagioclasa euhedral con textura seriada, feldespato potásico subhedral a anhedral y cuarzo anhedral y minerales ferromagnesianos correspondientes a hornblenda, biotita y actinolita.

Dominio medio

Unidad (M)

Unidad cuarzo-monzodioritica de grano grueso, esta unidad se encuentra localizada en la parte más alta del plutón en el norte, se encuentra compuesto por plagioclasa euhedral con textura seriada, feldespato potásico subhedral a anhedral y cuarzo anhedral con texturas cumuladas y minerales ferromagnesianos correspondientes a hornblenda, biotita, clinopiroxeno y óxidos de Fe rellenando intersticios.

Dominio basal

Unidad (P)

Unidad monzogranítica de grano fino a medio, esta unidad se encuentra localizada en la parte basal del plutón, se encuentra compuesto por plagioclasa euhedral, feldespato potásico subhedral a anhedral con texturas poiquiliticas, cuarzo y minerales ferromagnesianos con texturas intersticiales.

Adicionalmente, en el Plutón San Gabriel se encuentran morfologías correspondientes a diques de grano fino graníticos a leucograníticos con la presencia de minerales ferromagnesianos, y enclaves máficos separados en dos grupos: los primeros presentan un tamaño centimétrico (< 14 cm) de grano fino a medio compuestos por anfibola y plagioclasa y el segundo grupo compuesto por enclaves máficos (<10 cm) de grano fino con texturas afaníticas a porfíricas compuestos por plagioclasa, y biotita.

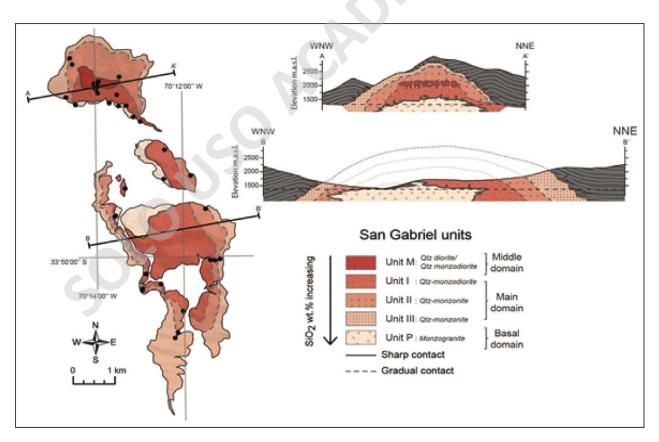


Figura 15. Unidades plutón San Gabriel, Payacán et al., (en prep) - Lithos.

3 Petrografía y composición de los enclaves máficos.

3.1 Introducción

En este capítulo se presentan las características petrográficas de los enclaves máficos presentes en el Plutón San Gabriel, consistentes en la composición mineralógica, morfológica y textural a mesoescala y microescala.

3.2 Metodología

Respecto a la petrografía de las muestras, estas se obtuvieron mediante la caracterización a macroescala de las muestras de mano. Posteriormente algunas de las muestras de mano fueron cortadas y pulidas en una forma similar un a un paralelepípedo, además se incluyó la caracterización a nivel microscópico de las muestras de mano y los testigos orientados, cabe destacar que las muestras observadas en microsocopios corresponden cortes transparentes pulidos obtenidos en el taller de Rubén Espinoza ubicado en la comuna de Quinta Normal.

3.3 Puntos de muestreo

En el área de estudio a lo largo del plutón San Gabriel se realizaron mediciones y muestreos en 28 sectores, de los cuales un total de 24 sectores presentaban enclaves máficos (Tabla 1; Figura 16).

Cabe mencionar que no se accedió a las zonas superiores del plutón San Gabriel (Unidad M, zona norte).

Tabla 1. Posición de los puntos de muestreo, en amarillo aquellos sectores de muestreo en los que no se encuentran enclaves máficos.

Puntos muestreo	N UTM	E UTM	H msnm	Unidad Plutón San Gabriel
19SGI01	6261028	387211	1375	Unidad P
19SGI02	6261201	386831	1360	Unidad P
19SGI03	6261400	386537	1389	Unidad P

6261506 6261550 6261643 6259290 6259345 6260161 6259856	386432 386415 385827 387615 388111 387885	1437 1469 1395 1485 1590 1358	Unidad P Unidad P Unidad II Unidad I Unidad I
6261643 6259290 6259345 6260161 6259856	385827 387615 388111	1395 1485 1590	Unidad II Unidad I
6259290 6259345 6260161 6259856	387615 388111	1485 1590	Unidad I
6259345 6260161 6259856	388111	1590	
6260161 6259856			Unidad P
6259856	387885	1250	
		1338	Unidad I
	388337	1390	Unidad I
<mark>6259764</mark>	<mark>388145</mark>	1470	Unidad I
<mark>6252700</mark>	<mark>389269</mark>	<mark>1471</mark>	Roca de caja
6253772	389077	1457	Unidad I
6254852	387871	1430	Unidad I
6256653	386840	1381	Unidad I
6260919	387395	1373	Unidad II
6256893	386774	1385	Unidad I
6261751	384712	1296	Unidad III
6261751	384712	1460	Unidad I
6254790	387671	1461	Unidad I
6256856	386703	1386	Unidad I
6256970	386711	1402	Unidad I
6261515	385090	1280	Unidad P
6261048	387149	1369	Unidad II
6261933	384854	1380	Unidad III
<mark>6259189</mark>	388486	1450	<mark>Unidad I</mark>
<mark>6258736</mark>	<mark>388976</mark>	<mark>1640</mark>	<mark>Unidad II</mark>
6259625	388472	1413	Unidad II
	6256653 6260919 6256893 6261751 6261751 6254790 6256856 6256970 6261515 6261048 6261933 6259189 6258736 6259625	6256653 386840 6260919 387395 6256893 386774 6261751 384712 6261751 384712 6254790 387671 6256856 386703 6256970 386711 6261515 385090 6261048 387149 6261933 384854 6259189 388486 6258736 388976 6259625 388472	6256653 386840 1381 6260919 387395 1373 6256893 386774 1385 6261751 384712 1296 6261751 384712 1460 6254790 387671 1461 6256856 386703 1386 6256970 386711 1402 6261515 385090 1280 6261048 387149 1369 6261933 384854 1380 6259189 388486 1450 6258736 388976 1640 6259625 388472 1413

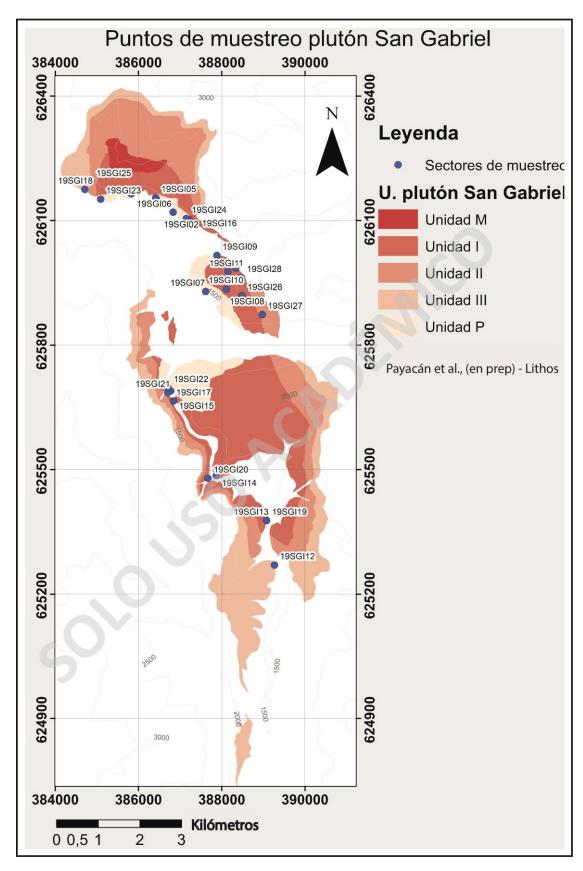


Figura 16. Sectores de muestreo plutón San Gabriel, respecto a las unidades definidas por Payacán et al (en prep) - Lithos.

3.4 Caracterización morfológica y petrográfica de los enclaves máficos

Los enclaves máficos observados en los puntos de muestreo se agruparon en 2 tipos mayoritarios de acuerdo a su composición, textura y tamaño de grano, se pudo representar la cantidad de los enclaves en el plutón San Gabriel para cada grupo definido, a partir de una gráfica (Figura 17). Los enclaves magmáticos cristalinos estos se encuentran preservados y distribuidos principalmente en la Unidad P y III del plutón San Gabriel, mientras que, los enclaves microcristalinos se encuentran preservados y distribuidos en la Unidad II del plutón San Gabriel (Figura 18).

Respecto a las relaciones entre el largo (cm) y el ancho (cm) de cada enclave medido, es decir, el aspecto (Figura 19), aproximandamente un 95% de los enclaves medidos presentan una anisotropía superior a 1, esto es indicativo que los enclaves máficos presentan algún grado de deformación, relacionado a procesos dinámicos al interior de un reservorio magmático (Vernon 1983) o a procesos estructurales (Vasallo et al., 2002).

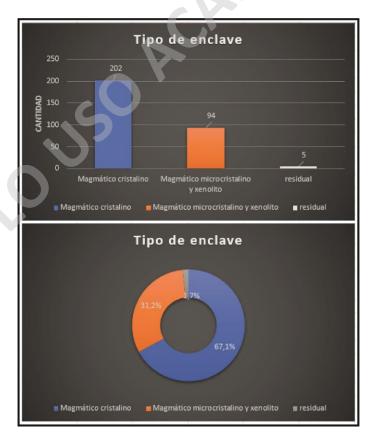


Figura 17. Gráfico de barra y circular que representan la frecuencia de cada tipo de enclave máfico en el área de estudio.

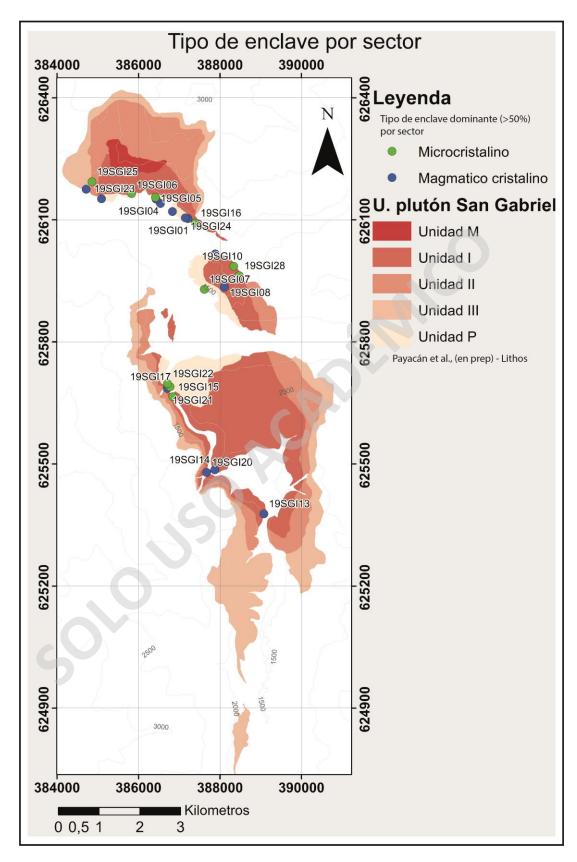


Figura 18. Tipos de enclaves máficos previamente descritos respecto a su predominancia por sector y su ubicación presentes en el plutón San Gabriel. Unidades petrográficas tomadas de Payacán et al. (en prep.).

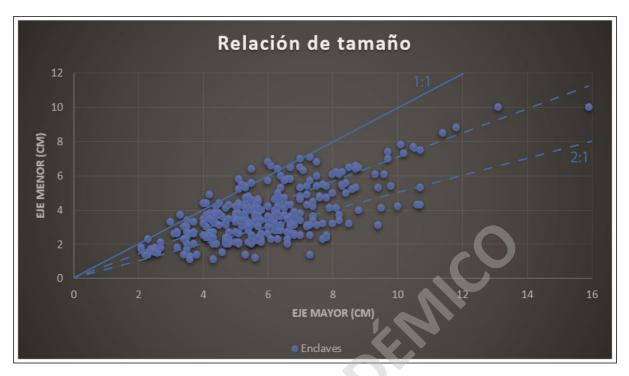


Figura 19. Relación de tamaño y tendencias de enclaves (eje mayor / eje menor (cm)).

Enclaves magmáticos cristalinos

Morfología: Enclaves elipsoidales a circulares con bordes redondeados a subredondeados con un tamaño máximo de 15 cm.

Mineralogía modal: Este grupo de enclaves se ha podido definir respecto a su composición en: Dioritas, compuestas por plagioclasa (40-50%), anfibola (30-45%), biotita (<10%), piroxeno (10-15%) y cuarzo (<5%), estos presentan tamaños de grano grueso (5-30 mm), medio (2-5 mm) y fino (<2 mm). Cuarzo dioritas, las que se componen por plagioclasa (35-45%), anfibola (40%), biotita (10-15%) y cuarzo (0-10%), estos presentan tamaños de grano medio (2-5 mm) y fino (<2 mm).

Textura: A escala mesoscópica presentan texturas porfíricas respecto a la plagioclasa y minerales máficos, holocristalinas, con cristales de grano fino a medio. A escala microscópica se puede observar textura intergranular en las plagioclasas, además presenta zonaciones y maclas del tipo simple. Los piroxenos se encuentran en cúmulos, además algunas anfibolas y biotitas presentan bordes de reacción. Se presentan minerales secundarios como clorita y biotita secundaria reemplazando a la biotita, así como también se observa la presencia de opacos como inclusiones en biotita.

Enclaves microcristalinos

Morfología: Enclaves elipsoidales, ovalados y circulares con bordes subangulosos a redondeados con un tamaño máximo de 13 cm.

Mineralogía modal: Este grupo de enclaves se ha podido definir respecto a su composición en: Cuarzo dioritas, compuestas por plagioclasa (30-45%), anfíbola (35 - 40%), biotita (10-15%) y cuarzo (0-10%), estos presentan tamaños de grano medio (2-5 mm) y fino (<2 mm). Tonalitas, compuestas por plagioclasa (30-40%), anfíbola (<45%), biotita (10%) y cuarzo (10%), estos presentan tamaños de grano medio (2-5 mm) y fino (<2 mm).

Texturas: A nivel macroscópico presentan texturas afaníticas, holocristalinas, con cristales de grano fino. A escala microscópica se puede observar textura intergranular en las plagioclasas, además presenta zonaciones y maclas del tipo simple y albita. Los piroxenos se encuentran en cúmulos, además algunas anfíbolas y biotitas presentan bordes de reacción, se presentan minerales secundarios como clorita y biotita secundaria reemplazando a la biotita.

Cabe mencionar que este grupo de enclaves presenta características petrográficas similares a la roca de caja (formaciones Farellones y Abanico) en lo que respecta a composición mineralógica y textural.

Enclaves residuales

Enclaves circulares con un máximo de 5 cm, estos son de grano medio a grueso compuestos en su mayoría por turmalina y un bajo porcentaje de plagioclasa y cuarzo.

3.5 Sección delgada

De un total de 78 muestras recolectadas en terreno correspondientes a muestras de mano y testigos, 31 de estas fueron escogidas para confeccionar cortes transparentes pulidos, estas posteriormente fueron analizadas en el microscopio Nikon del laboratorio de microscopios de la Universidad Mayor. Dentro de estas se pudieron identificar minerales primarios, accesorios y texturas de los enclaves máficos.

3.5.1 Minerales primarios

Los minerales presentes en cada grupo de enclaves previamente definidos son generalmente similares para ambos grupos, en el caso de la plagioclasa existe una diferencia la cual se encuentra descrita.

Plagioclasas

Las plagioclasas presentes en los enclaves máficos en general presentan un tamaño entre los 0,25 y 1 mm, y en muestras especificas algunas plagioclasas llegan a los 3 mm (Figura 20 a), esta diferencia de "familias" de tamaños se aprecia principalmente en las muestran correspondientes a los enclaves magmáticos cristalinos. Respecto a la forma, los cristales son subhedrales a anhedrales, estos presentan maclas del tipo simple y polisintéticas, además en algunos presentan zonaciones.

Cuarzo

Solo se ha podido observar cuarzo en la muestra (19SGI0202), con tamaños inferiores al 0,1 mm. Estos son subhedrales a anhedrales y se encuentran "rodeando" a las plagioclasas y algunas anfíbolas (Figura 20 a y g).

Anfibola

Las anfibolas presentes en los enclaves máficos presentan dos poblaciones de tamaño, una entre los 0,05 y 0,3 mm (Figura 20 h)y la segunda de mayor tamaño, entre 1 y 2 mm. Respecto a su forma, los cristales principalmente son anhedrales y en los bordes se encuentran alterados a clorita y reemplazados por biotita (Figura 20 h).

Biotita

En el total de las muestras analizadas, las biotitas se encuentran en un bajo porcentaje (<10%) respecto a los demás minerales máficos observados. Estas presentan un tamaño entre los 0,2 y 0,4 mm, estos son anhedrales y presentan inclusiones de minerales opacos (Figura 20 g).

Piroxeno

Los piroxenos presentes en los enclaves se encuentran en un bajo porcentaje (<15%) respecto a la plagioclasa, presentan un tamaño inferior a los 0,3 mm, Estos presentan formas subhedrales y en su mayoría se encuentran formando cúmulos (Figura 20 h).

3.5.2 Minerales secundarios

Clorita

La clorita presente en algunas muestras, se encuentran como mineral secundario producto de la alteración de la anfíbola y biotita, estas presentan un tamaño entre los 0,1 y 0,3 mm y presentan forma anhedral.

Epidota

Este mineral se encuentra presente en muy pocas muestras, este presenta un tamaño <0,1 mm y tienen forma subhedrales.

Opacos

Estos minerales presentan tamaños <0,05 mm, presentan bordes angulosos y se encuentran inmersos en forma de inclusiones en anfíbola, plagioclasa y biotita.

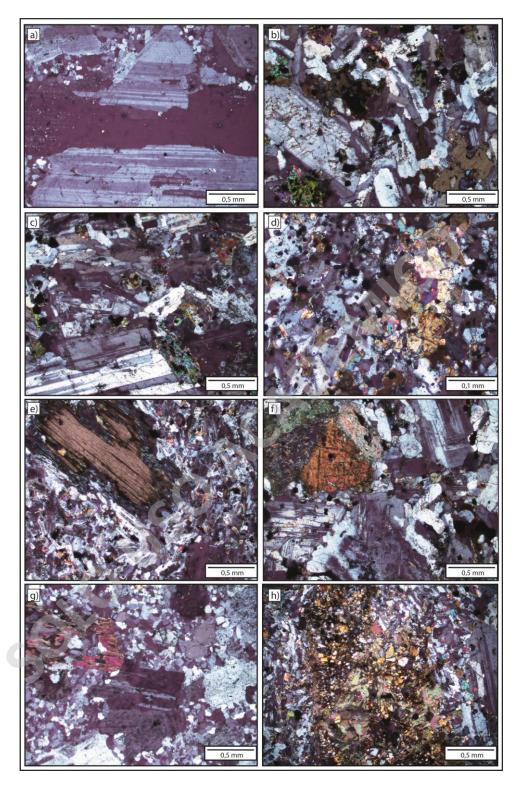


Figura 20. a) 19SGI0202, nic x, 4x. Cristal de plagioclasa de 3 mm con macla simple con cristales de cuarzo (<0,1mm). b y c) 19SGI1002, nic x, 4x. Diorita con textura intergranular con presencia de plagioclasa, anfibola y biotita. d) 19SGI2201, nic x, 20x. Plagioclasas con presencia de maclas simples y polisintéticas y presencia de cúmulos de anfíbola. e) 19SGI0101, nic x, 4x. Cristal de anfíbola alterado a clorita, muestra con textura intergranular(plagioclasas). f) 19SGI0601, nic x, 4x. Cristales de plagioclasa de gran tamaño, en la parte superior se observan cristales de anfibola alterados. g) 19SGI0202, nic x, 4x. Cristal de anfibola reemplazado por biotita. h) 19SGI0301, nic x,4x cumulo de cristales de piroxeno inmersos en cristales de plagioclasas.

4 Distribución espacial y orientación preferencial de enclaves máficos.

4.1 Introducción.

En este capítulo se presentan los resultados de forma y orientación preferencial de los enclaves máficos en el plutón San Gabriel. En una primera etapa se comienza explicando en detalle la metodología utilizada para la medición de los enclaves en 2 dimensiones y la construcción de los elipsoides de anisotropía. Posteriormente se presentan los resultados correspondientes a la distibución, orientación y parámetros de forma de los enclaves máficos en 2D y 3D.

4.2 Metodologías

Campaña de terreno:

La distribución y orientación de los enclaves fue determinada a partir de la medición del rumbo y manteo (dip/dip direction) de los planos que albergan a estos. En total se realizó la medición de 28 sectores, los cuales se encontraban ubicados en áreas aledañas a caminos y senderos. Para cada medición de enclaves se determinó el tamaño de los ejes de mayor y menor longitud, además estos fueron clasificados de acuerdo a: 1) la forma y sus bordes si estos eran ovalados, elipses o circulares con bordes angulosos, subredondeados o redondeados, 2) índice de color si estos eran grises, gris claro o gris oscuro y 3) las características texturales de estos si eran cristalinos o microcristalinos (Figura 21). En cada sitio de muestreo se obtuvieron fotografías de los enclaves, en las cuales se indica la orientación del plano que contiene a cada uno de los enclaves.

En la mayoría de los sectores de muestreo se intento medir la mayor cantidad de enclaves por plano, con la finalidad de minimizar los errores generados, en promedio se midieron aproximadamente entre 10 a 15 enclaves por cada sector de muestreo.

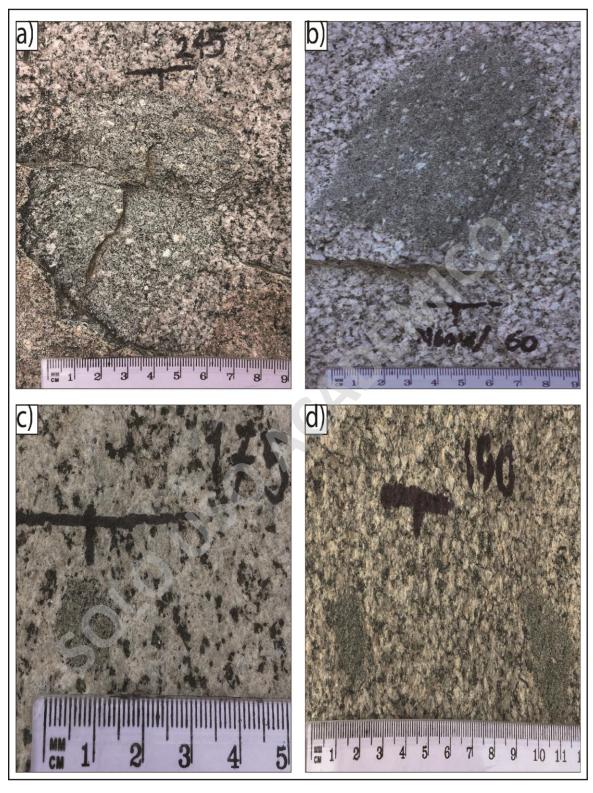


Figura 21. Enclaves máficos observados en terreno: a y b) enclaves ovalados cristalinos oscuros, c) enclave máfico circular microcristalino y d) enclaves máficos microcristalinos elipsoidales.

Cálculo de la orientación preferencial en 2D:

En primera instancia se realizó el cálculo del rake, el cual consiste en el cálculo del ángulo ubicado entre el eje de mayor longitud del enclave y el rumbo del plano (sentido horario) en el cual se encuentra el enclave. Esta medición fue realizada mediante la utilización del software *JMicrovision* (Figura 22) con la finalidad de mejorar la logística durante la campaña de terreno. En adición a la medición de enclaves se integraron los datos correspondientes a mediciones y características a una base de datos estadística en la que además se llevó a cabo el cálculo de la relación de aspecto entre los ejes del enclave.

Posteriormente con la finalidad de determinar la distribución y proyección de los enclaves en el espacio, se ingresaron los datos al software *Ellipsefit*, permitiendo determinar la forma, distribución y orientación de los enclaves en el espacio.

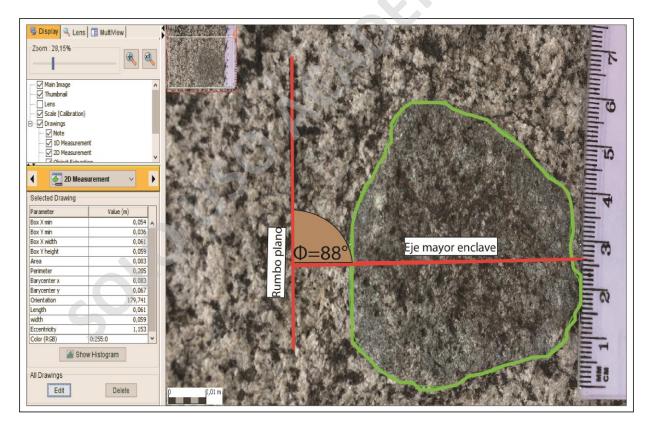


Figura 22. Cálculo del rake mediante el software JMicrovision.

Cálculo de elipsoides de anisotropía basados en la orientación y forma (3D).

Con el procesamiento del software Ellipsefit, se pudo determinar la forma y orientación preferencial en 3 dimensiones de los enclaves máficos utilizando los datos en 2D previamente definidos, este corresponde al cálculo de un elipsoide representado por 3 ejes principales: eje mayor (X), eje intermedio (Y) y eje menor (Z). Al utilizar este software, el cálculo de elipsoides se puede basar en alguno de los siguientes métodos analíticos derivados del método de Owens (1984): (1) el método de Robin (2002) distingue 2 casos, en el primer caso realiza el cálculo del elipsoide a partir de una ecuación lineal con 6 parámetros (eje mayor, eje menor, razón eje mayor/ menor, rumbo, manteo y rake), en el caso 2 los parámetros de los elipsoides son calculados a partir de los radios de los ejes axiales y un ángulo representado por el rake (2) el método de Shan (2008) es similar en teoría al método de Robin (2002) pero tiene un mayor alcance, ya que incorpora los ejes de los elipsoides, lineación y foliación. En este trabajo se opta por el método de Shan (2008), ya que al utilizar una mayor cantidad de parámetros incluyendo a la lineación, esto reducirá el porcentaje de error. Como se puede observar, ambos métodos analíticos difieren en la característica del elipsoide resultante. Por ejemplo, en el gráfico de Flinn indica que según el método de Robin (2002) la foliación es mayor que la lineación, mientras que en el método de Shan (2008) la foliación es similar a la lineación, respecto al gráfico de Nadai donde se calcula la forma de los elipsoides también existe una diferencia, ya que según el método de Robin (2002) indica que el elipsoide tiene una forma oblata, mientras que según el método de Shan (2008) indicaría una forma triaxial. Debido a estas grandes diferencias, en este trabajo el método utilizado será el método de Shan, ya que disminuye el porcentaje de error al utilizar una mayor cantidad de parámetros (Figura 23).

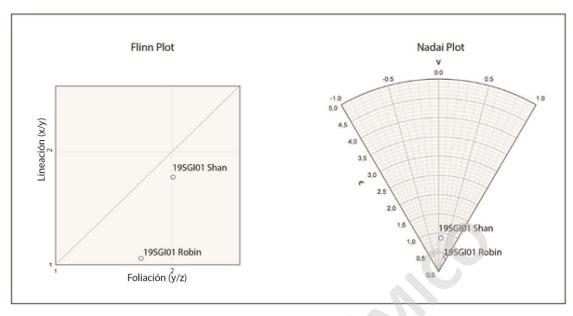


Figura 23. Variaciones de los métodos analíticos de Robin y Shan para determinar la orientación y forma de los enclaves máficos para el sector 19SGI01, a la izquierda gráfico de Flinn (escala logarítmica), a la derecha gráfico de Nadai.

4.3 Distribución espacial de los enclaves máficos.

Los enclaves previamente agrupados (Petrografía y composición de los enclaves máficos.) se encuentran distribuidos, 1) los enclaves magmáticos cristalinos se concentran principalmente en las unidades P, III y en menor medida en la unidad I del plutón San Gabriel (Payacán et al., (en prep)). 2) los enclaves microcristalinos se concentran principalmente en las unidades más cercanas a los bordes del plutón, es decir, la unidad I y II, 3) los enclaves residuales son los que presentan una menor concentración y solo se encuentran en los sectores 21 y 22 (Figura 24 y Figura 25).

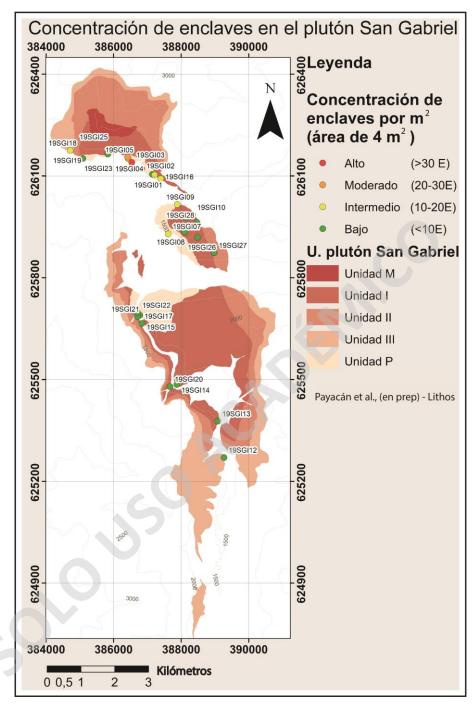


Figura 24. Concentración y distribución de enclaves máficos en el plutón San Gabriel, respecto a las unidades definidas por Payacán et al (en prep) – Lithos.

Figura 25. Gráfico de concentración de enclaves por sector, el area por sector comprende un área de 4 m².

4.4 Orientación de los enclaves máficos.

Los enclaves máficos observados en dos dimensiones varían desde elipses, círculos y óvalos, estos presentan tamaños que van desde 1 cm hasta los 15 cm aproximadamente en sus ejes mayores y en su mayoría estos presentan bordes subredondeados a redondeados (excepto algunos xenolitos que presentan bordes subangulosos).

Se registró la orientación de aproximadamente 200 enclaves a lo largo del plutón San Gabriel, contenidos en planos con orientaciones variables dependiendo del sector medido (Tabla 2).

Respecto a la orientación de los datos correspondientes a los enclaves, como se puede observar (Figura 26) existe una tendencia o patrón de los datos ya que se encuentran mayoritariamente concentrados entre los 15° y 135° con una relación de aspecto (eje mayor/eje menor) promedio entre 1 y 4 cm.

Tabla 2. Ejemplo cuantificación y caracterización enclaves máficos en el plutón San Gabriel.

	Datos			Ubicación (UT	icación (UTM) Código					
Sector	Dipdir	Dip	Rake	Norte	Este	Muestra mano	Foto	Muestra testigo		
19SGI01	345	60 33 6261028 38		387211	19SGI0101E 19SGI0102E	1627				
1750101	355	75	70			1,00101022	1635			

340	80	65	1631	
330	61	40	1632	
334	70	50	1633	
355	46	60	1630	
350	50	45	1634	
340	46	35	1626	
190	55	4	1636	
203	65	15	1825	
194	73	28	1826	
215	45	30	1827	
228	65	45	1828	
190	43	64	1637	
187	58			

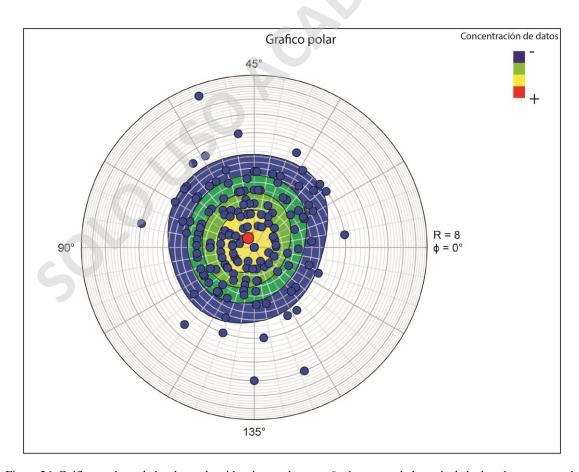


Figura 26. Gráficos polares de los datos obtenidos durante la campaña de terreno, la leyenda de la derecha representa la concentración total o tendencia en la cual los enclaves se encuentran distribuidos.

4.5 Orientación preferencial de enclaves máficos: Elipsoides de anisotropía basados en la orientación y forma.

De los 24 sectores medidos con presencia de enclaves, los cuales fueron proyectados en tres dimensiones, se determinó el *strain* o deformación el cual corresponde al producto de la deformación aplicada a una esfera (asumiendo esta forma como original). Con esto se pudo determinar la forma de los elipsoides.

4.5.1 Definición de parámetros

La medición de enclaves y posterior análisis de estos mediante el uso del *software Ellipsefit*, entrega datos correspondientes a la magnitud, declinación e inclinación (máxima, intermedia y mínima) de los 3 ejes (mayor, intermedio y menor), los cuales representan a un elipsoide. A partir de estos datos se obtienen un conjunto de parámetros escalares correspondientes a:

1) Anisotropía P: Corresponde a la razón entre el eje máximo y el eje mínimo y cuantifica la diferencia de magnitud dado por estos ejes.

$$P = \frac{eje \ m\'{a}ximo \ (k \ max)}{eje \ m\'{i}nimo \ (k \ min)}$$

2) Foliación F: Corresponde a la razón entre el eje intermedio y el eje mínimo.

$$F = \frac{eje \ intermedio \ (k \ int)}{eje \ minimo \ (k \ min)}$$

3) Lineación L: Corresponde a la razón entre el eje mínimo y el eje intermedio.

$$L = \frac{eje \ minimo \ (k \ min)}{eje \ intermedio \ (k \ int)}$$

4.5.2 Parámetros de forma de los elipsoides de orientación.

Como se puede observar en el gráfico de Nadai (Nadai, 1950) (Figura 27) un 63% de los sectores que presentan enclaves máficos corresponden a elipsoides oblatos, esta forma ocurre cuando el parámetro v o *strain symmetry* se encuentra entre 0 y 1, indicando que el tipo de *strain* es en general de aplastamiento (esto ocurre cuando la relación de esfuerzos es S1=S2>S3) y la foliación es mayor que la lineación, mientras que un 29% de los enclaves son elipsoides prolatos, esta forma ocurre cuando el parámetro v o *strain symmetry* se encuentra entre -1 y 0, indicando que el tipo de *strain* es de constricción (esto ocurre cuando la relación de esfuerzos es S1>S2=S3) y la lineación es mayor, el 8% restante presentan formas triaxiales.

Respecto a la anisotropía de los elipsoides, se ha podido inferir mediante el gráfico de Flinn (Flinn, 1978) que en la mayoría de los sectores muestreados la foliación (eje y (intermedio)/ eje z (menor)) es mayor que la lineación (eje x (mayor) / eje y (intermedio)) (Figura 28). Esto se relaciona con el gráfico de Nadai, ya que, la mayoría de los grupos de elipsoides analizados por sector corresponden a elipsoides oblatos. Además, se puede observar una tendencia respecto a la ubicación de los enclaves respecto a su parámetro de forma, ya que, los enclaves prolatos tienden a ubicarse en las unidades III y P del plutón, mientras que los enclaves oblatos se concentran principalmente en la unidad I, II y III. De igual manera se puede observar una tendencia respecto a la foliación por sector (Figura 29), ya que, en la mayoría de los casos la foliación es subvertical a vertical como se muestra en los planos del mapa (Figura 30), mientras que en el caso de las lineaciones de los enclaves por sector, existe una tendencia, en la que las direcciones se concentran en su mayoría hacia el Este (Figura 31).

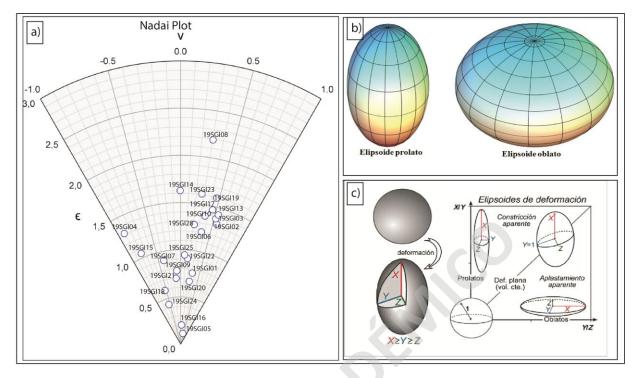


Figura 27. a) Gráfico de Nadai (Nadai, 1950) el cual índica la forma de los enclaves máficos en cada sector estudiado, en este caso los enclaves máficos presentan forma prolatas, triaxiales y en la mayoría estos tienen forma oblata, elaboración mediante el software Ellipsefit.

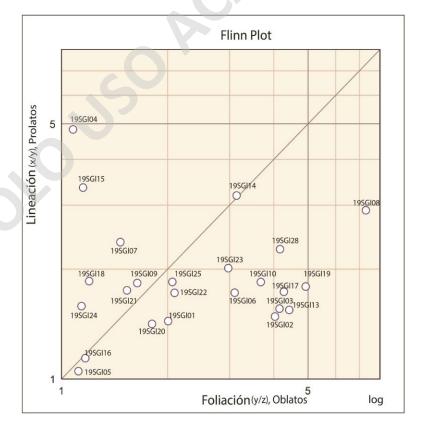


Figura 28. Gráfico de Flinn (escala logarítmica) (Flinn, 1958) el cual representa los grados de anisotropia de cada sector estudiado, elaboración mediante el software Ellipsefit.

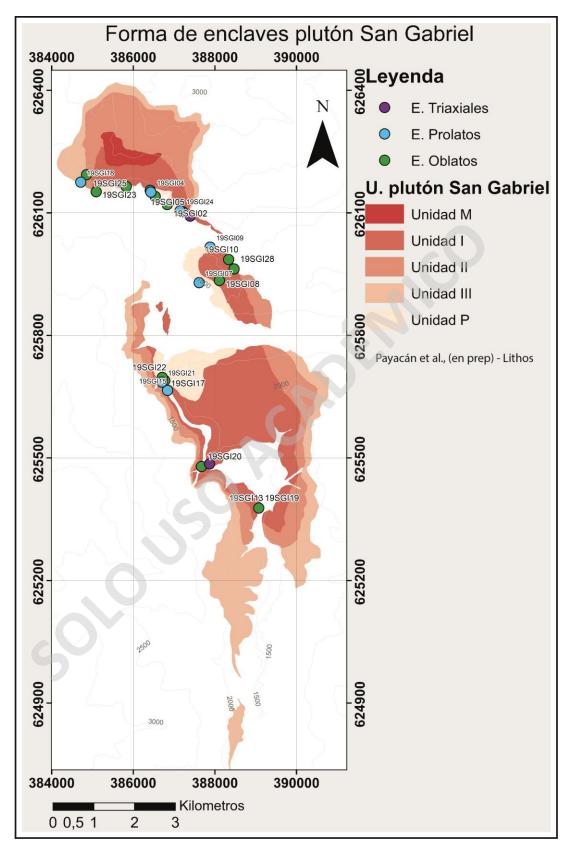


Figura 29. Forma de los enclaves máficos presentes en el plutón San Gabriel. Unidades petrográficas tomadas de Payacán et al. (en prep.).

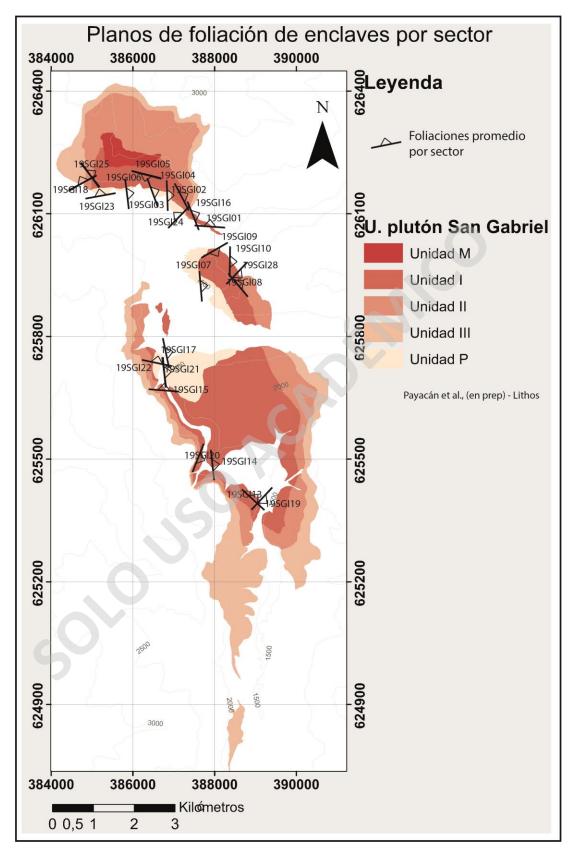


Figura 30. Foliación de los enclaves máficos presentes en el plutón San Gabriel. Unidades petrográficas tomadas de Payacán et al. (en prep.).

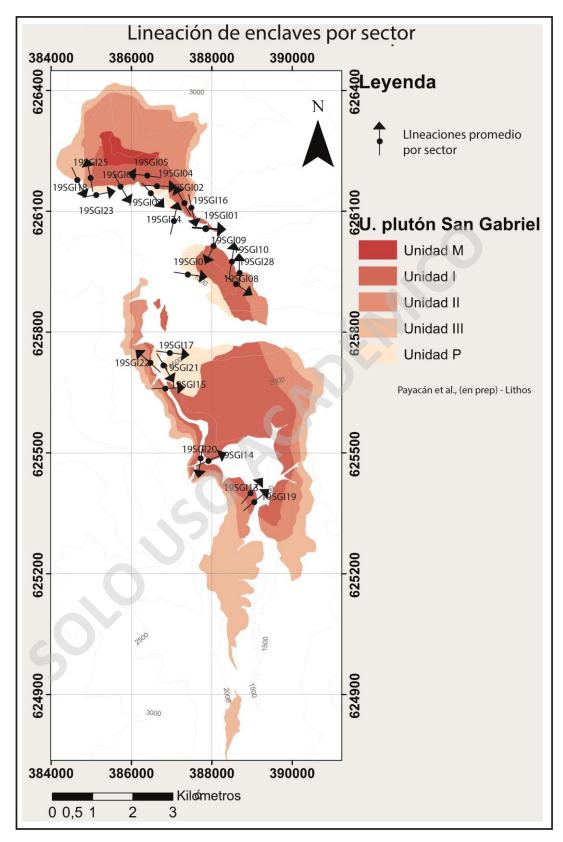


Figura 31. Lineación de los enclaves máficos presentes en el plutón San Gabriel. Unidades petrográficas tomadas de Payacán et al. (en prep.).

4.5.3 Parámetros de orientación de los elipsoides.

La orientación de enclaves fue calculada a partir de los valores entregados por el *software Ellipsefit* correspondientes a la declinación (trend) e inclinación (plunge) de los tres ejes de anisotropía (eje mayor (X), eje intermedio (Y) y eje menor (Z)) (Tabla 3).

Como se puede observar en la proyección estereográfica elaborada con el *software Stereonet*, existe una tendencia y se reconoce la dirección de la lineación dada por los ejes máximos (X), aproximadamente un 90% de los sectores se concentran principalmente en el cuadrante NE y SE, mientras que los ejes intermedios (Y) se encuentran orientados hacia el E-SE, y el eje mínimo (Z) se encuentran orientados hacia el SW. Además existe un patrón de cada sector muestreado respecto a la orientación y la forma del plutón San Gabriel, ya que, en la mayoría de los sectores los ejes se encuentran alineados respecto a la forma alargada del plutón (Figura 32, Figura 33 y Figura 34). Además, es posible reconocer los planos de foliación de cada sector (línea negra, conformada por la intersección entre los ejes mayores y ejes intermedios), como se puede observar en los mapas (Figura 33, Figura 34), la mayoría de los planos de foliación se encuentran orientados hacia el NNE.

Tabla 3. Declinación e inclinación máxima (k máx), intermedia (k int) y mínima (k mín) entregadas por el software Ellipsefit.

Sector	K max		K int Int Dec Int Inc		K min Min Dec Min Inc		Error 95%		
Sector	Max Dec	Max Inc					Max 95% Int 95%		Min 95%
19SGI01	306,3	65,9	104,1	22,5	197,5	8,2	1,9	0,4	0,2
19SGI02	328,6	32,8	101,4	46,5	221,0	25,1	1,8	0,4	0,1
19SGI03	139,8	33,7	9,7	44,0	249,9	27,3	5,0	0,6	0,1
19SGI04	88,5	50,5	264,5	39,4	356,1	2,0	3,5	0,3	0,2
19SGI05	280,8	65,2	108,8	24,6	17,4	3,1	0,2	0,1	0,1
19SGI06	149,5	52,9	1,2	32,7	261,0	15,5	2,7	0,4	0,1

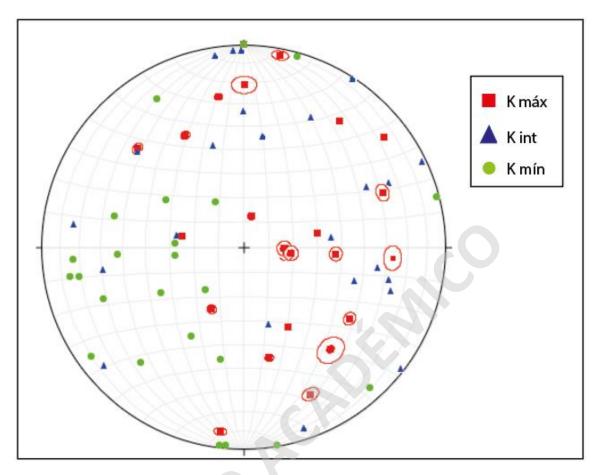


Figura 32. Red estereográfica la cual muestra la orientación de los ejes máximos, intermedios y mínimos de los 24 sectores estudiados, elaborada mediante el software Stereonet.

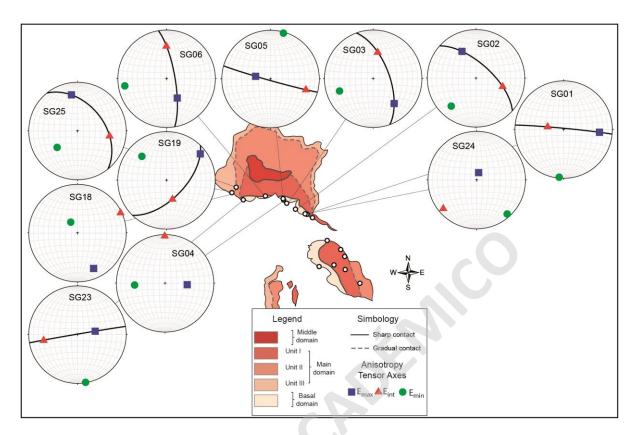


Figura 33. Proyección estereográfica de la orientación de los elipsoides de anisotropía obtenidos por la orientación preferencial de enclaves máficos en el plutón San Gabriel, parte norte. Unidades petrográficas tomadas de Payacán et al. (in prep.).

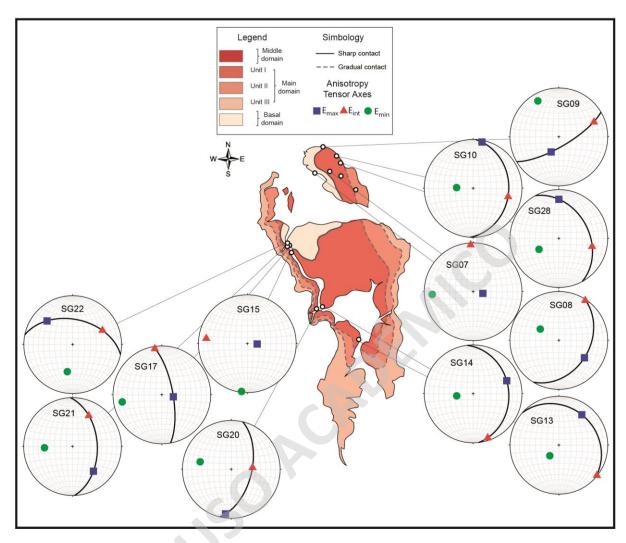


Figura 34. Proyección estereográfica de la orientación de los elipsoides de anisotropía obtenidos por la orientación preferencial de enclaves máficos en el plutón San Gabriel, parte centro sur. Unidades petrográficas tomadas de Payacán et al. (in prep.).

4.6 Algunas consideraciones

Respecto a la forma y orientación de los enclaves máficos en 2 dimensiones, se logró determinar que estos presentan formas redondas a ovaladas y principalmente presentan un rake entre los 15° y 75°. Mientras que, en cuanto al análisis de los enclaves en 3 dimensiones se determinó que los elipsoides presentan formas oblatas en su mayoría y en una menor cantidad formas prolatas.

Respecto a la distribución de las formas en los sectores del plutón, se determinó que los enclaves oblatos se distribuyen en las unidades I, II y III del plutón, mientras que los enclaves prolatos se

distribuyen principalmente en la Unidad III y P del Plutón, es decir, existe una tendencia o patrón determinado.

Las lineaciones y foliaciones de los enclaves presentan tendencias principalmente subverticales a verticales, estas no presentan patrón especial o concentración respecto a la distribución en el plutón.

Finalmente respecto a la orientación de los ejes de los enclaves máficos se ha podido determinar que los ejes máximos se encuentran localizados en el cuadrante NE y SE, los ejes intermedios se encuentran localizados en el cuadrante E – SE y los ejes mínimos se encuentran localizados en el cuadrante SW (Figura 35).

A modo de resumen se representa a continuación, una tabla recopilatoria respecto a la cuantificación y caracterización general de los enclaves presentes en el plutón San Gabriel respecto a los capítulos 3 y 4 (Tabla 4).

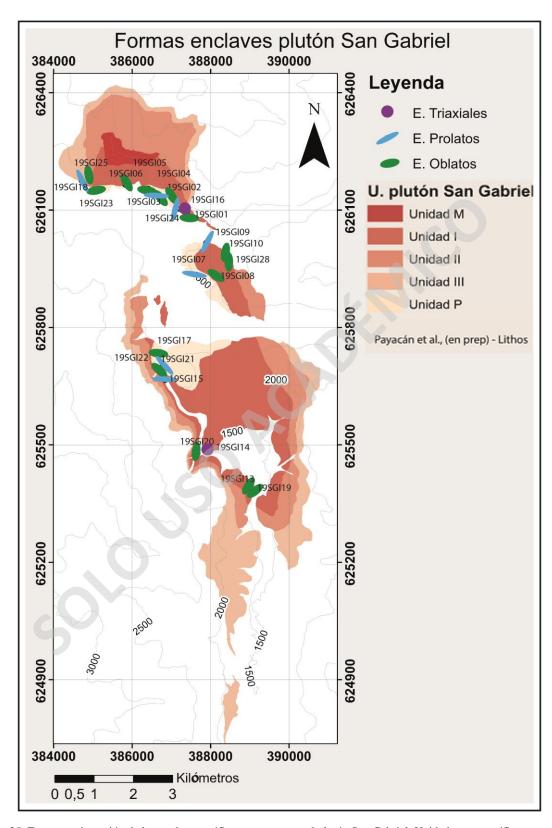


Figura 35. Forma y orientación de los enclaves máficos presentes en el plutón San Gabriel. Unidades petrográficas tomadas de Payacán et al. (en prep.), orientaciones de los enclaves respecto al trend de los ejes mayores.

Tabla 4. Caracterización y cuantificación general de los enclaves máficos por sector muestreado (concentración respecto a parámetros explicados en capítulo 3 y 4).

	T 11 .	• 4			Características						
	Ubica	icion	Concentración	Unidad			Car	acteristicas		Dirección	
ID			x área	plutón				4		de	
	Y	X			Textura macro	Principal grupo	Formas	Índice color	Bordes	elongación (eje máx)	
		387211		Unidad	macro	Magmático	Torrida	COIOI	Sub	(cje max)	
19SGI01	6261028	38/211		P	Porfírica	cristalino	Oblato	Gris claro	red/redondeados	O - E	
19SGI02	6261201	386831		Unidad P	Porfírica	Magmático cristalino	Oblato	Gris claro	Sub red/redondeados	NO	
1930102	0201201	20.6527		Unidad	Torrica	Magmático	Oblato	GHS Claro	Sub	NO	
19SGI03	6261400	386537		P	Porfírica	cristalino	Oblato	Gris claro	red/redondeados	NO	
19SGI04	6261506	386432		Unidad P	Afanítica	Microcristalino	Prolato	Gris oscuro	Sub ang/anguloso	O - E	
1750104	0201300	386415		Unidad	Titamitica	Wiciocristanno	Tiolato	GH3 03curo	Sub	O L	
19SGI05	6261550	360413		P	Afanítica	Microcristalino	Oblato	Gris oscuro	ang/anguloso	O - E	
19SGI06	6261643	385827		Unidad II	Afanítica	Microcristalino	Oblato	Gris oscuro	Sub ang/anguloso	NO	
		387615		Unidad I					Sub		
19SGI07	6259290	367013			Afanítica	Microcristalino	Prolato	Gris oscuro	ang/anguloso Sub	NE	
19SGI08	6259345	388111		Unidad P	Porfírica	Magmático cristalino	Oblato	Gris claro	red/redondeados	NO	
		387885		Unidad I		Magmático			Sub		
19SGI09	6260161	307003		Cindad I	Porfírica	cristalino Magmático	Prolato	Gris claro	red/redondeados Sub	NE	
19SGI10	6259856	388337		Unidad I	Porfírica	cristalino	Oblato	Gris claro	red/redondeados	N	
19SGI11	6259764	388145		S/D							
		389269									
19SGI12	6252700					Magmático S/I	D 		Sub		
19SGI13	6253772	389077		Unidad I	Porfírica	cristalino	Oblato	Gris claro	red/redondeados	NE	
19SGI14	6254852	387871		Unidad I	Porfírica	Magmático cristalino	Triaxial	Gris claro	Sub red/redondeados	N	
1330114	0234032	20.60.40		77 11 17	Torrica	Cristanno	THANIAI	GHS Clair	Sub	11	
19SGI15	6256653	386840		Unidad I	Afanítica	Microcristalino	Prolato	Gris oscuro	ang/anguloso	O - E	
19SGI16	6260919	387395		Unidad II	Afanítica	Microcristalino	Triaxial	Gris oscuro	Sub ang/anguloso	N	
1750110	0200717	367373			Aramtica	Whereeristanne	THAXIAI	GIIS OSCUIO	Sub	11	
19SGI17	6256893	386774		Unidad I	Afanítica		Oblato	Gris oscuro	ang/anguloso	O - E	
19SGI18	6261751	384712		Unidad III	Porfírica	Magmático cristalino	Prolato	Gris claro	Sub red/redondeados	NO	
1750110	0201731	301712		Unidad I	Torrirea	Magmático	Tionato	Gris ciaro	Sub	110	
19SGI19	6261751	384712		Omuau I	Porfírica	cristalino	Oblato	Gris claro	red/redondeados	NE	
19SGI20	6254790	387671		Unidad I	Porfírica	Magmático cristalino	Oblato	Gris claro	Sub red/redondeados	N	
				Unidad I		Magmático	221410		Sub		
19SGI21	6256856	386703		Omuau I	Porfírica	cristalino	Prolato	Gris claro	red/redondeados Sub	NO	
19SGI22	6256970	386711		Unidad I	Afanítica	Microcristalino	Oblato	Gris oscuro	ang/anguloso	NO	
				Unidad		Magmático			Sub		
19SGI23	6261515	385090		P Unidad	Porfírica	cristalino Magmático	Oblato	Gris claro	red/redondeados Sub	O - E	
19SGI24	6261048	387149		II	Porfírica	cristalino	Prolato	Gris claro	red/redondeados	O - E	
				Unidad					Sub		
19SGI25	6261933	384854		III	Afanítica	Microcristalino	Oblato	Gris oscuro	ang/anguloso	NNO	
19SGI26	6259189	388486				S /!	D				
19SGI27	6258736	388976				S/I	D				
1000100	(250,625	200472		Unidad	A. C ''	Minne	Ol-1	Coin	Sub	N	
19SGI28	6259625	388472		II	Afanítica	Microcristalino	Oblato	Gris oscuro	ang/anguloso	N	

5 Discusión.

5.1 Introducción

En este capítulo se sintetizan y discuten los resultados obtenidos en esta investigación. Esta discusión se divide en tres partes. En primer lugar, se presenta una interpretación de los procesos petrogenéticos que dieron lugar a los enclaves, Posteriormente, se analiza el estado reologico de los enclaves máficos y el magma hospedante durante el registro de la deformación que habría controlado la orientación preferencial de estos. Finalmente, se interpreta el proceso que habría controlado la deforamción y se propone un modelo conceptual para la deformación y su relación con los procesos magmáticos que ocurrieron en el interior del reservorio magmático que representa el plutón San Gabriel.

5.2 Génesis de los enclaves máficos

5.2.1 Procesos magmáticos asociados a la generación de enclaves en el plutón San Gabriel.

Los enclaves máficos presentes en el plutón San Gabriel tienen características petrográficas, mineralógicas, texturales y granulométricas diferentes entre sí. La mayoría de los enclaves en el plutón son del tipo magmático, mientras que una baja cantidad son del tipo xenolito y concentrados microgranulares, los cuales presentan formas redondeadas, ovoidales y elipsoidales. Además, los enclaves no presentan evidencias de deformación frágil presentes en los cristales (fracturas) a escala macroscópica y microscópica, esto implicaría que durante la génesis de los enclaves deberían presentar un bajo % de cristalinidad mientras estos se orientaban. De acuerdo a estas características, los enclaves máficos, a excepción de los xenolitos, fueron originados durante un proceso de mezcla heterogénea de magmas, es decir, un proceso de *mingling*. La evidencia que permite inferir este proceso es la presencia de plagioclasa proveniente del plutón y que se encuentra inmersa en los enclaves, es decir, disgregada desde las unidades del plutón (Figura 36). El *mingling* implica que los enclaves máficos presentes en el plutón fueron generados a partir de dos o más pulsos magmáticos: en una primera instancia los pulsos de origen ácido a intermedio que dieron origen al plutón San Gabriel, posteriormente, fueron intruidos por inyecciones de magma de

composiciones básicas a intermedias, durante un estado dúctil a semidúctil. Altos contrastes de la temperatura entre los magmas ácidos respecto a los magmas básicos llegando hasta 600°C, si se consideran magmas ácidos a 600°C y magmas básicos a 1300°C, sumado a los contrastes de la densidad y la viscosidad efectiva habrían generado la inmiscibilidad de los magmas provocando que los enclaves máficos fueran distribuidos y preservados como cuerpos individuales (Best, 2003). Este grupo de enclaves tambien pudo haber sido originado debido a una desmezcla convectiva producto de la inmiscibilidad y contrastes reológicos entre ambos fundidos (básico/ácido), la principal diferencia respecto al proceso anterior correspondería a la temporalidad de los procesos, ya que, en ambos casos serian originados producto de la inmiscibilidad entre magmas.

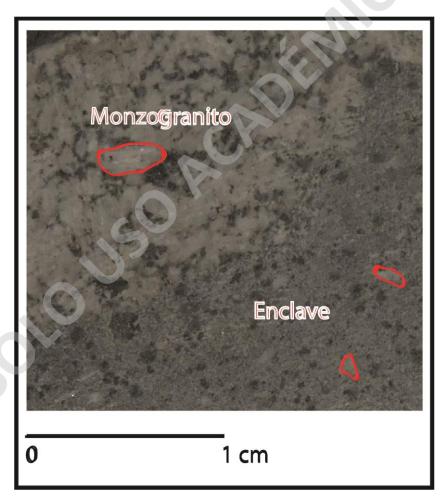


Figura 36. Muestra de mano sector 19SGI0201, correspondiente a la transición entre el monzogranito (Unidad P, Payacan et al., (en prep)) y enclave máfico.

Respecto a los concentrados microgranulares presentes en la zona, estos fueron originados durante un proceso en el cual el magma de origen ácido se encontraba cristalizando parcialmente,

y coetáneamente el magma de origen básico estaba disminuyendo su cantidad, debido a que se habían formado grupos de enclaves de mayor tamaño previamente, además del avance del tiempo y de la baja en la temperatura de cristalización tal como menciona Vernon (2004). Es por ello que los enclaves cristalizaron con un menor tamaño. En cuanto a los enclaves microcristalinos correspondientes a xenolitos, estos fragmentos subangolosos a angulosos presentan una composición andesítica muy similar a la roca de caja correspondientes a las formaciones Abanico/Farellones (página 41). Esto indicaría que estos fragmentos de roca de caja o xenolitos fueron generados por el proceso *stoping*, la que ocurre cuando el magma asciende y emplaza a la roca de caja provocando que esta se fracture y genere la caída de fragmentos de roca hacia el magma.

En cuanto al proceso en el que los enclaves magmáticos cristalinos fueron generados, corresponde a un proceso del tipo externo respecto a la cámara magmática, es decir, los enclaves fueron originados por procesos en un sistema abierto, principalmente asociado a la mezcla heterogénea entre dos magmas inmiscibles. El principal mecanismo por el cual los enclaves fueron originados correspondería al modelo propuesto por Vernon (1983) en el que los enclaves son producidos por las inyecciones de múltiples pulsos de composición básica sobre un magma de composición ácida durante un estado dúctil. En una primera etapa ocurre la inyección del magma básico sobre el magma ácido en un corto periodo de tiempo (coetáneo) (Hill et al., 1988), lo que provoca que en una segunda etapa los altos contrastes reológicos de los magmas principalmente la relación de la viscosidad efectiva y la densidad, provoca que el magma básico se mantenga como una capa inferior bajo la capa ácida bloqueando el ascenso del magma básico en una gran cantidad. En una tercera etapa, a medida que la convección interna en la cámara se produce, esta dinámica ocurre el "arrastre" de porciones o glóbulos de magma básico provocando que los enclaves sean generados. Para que el arrastre de glóbulos, posterior génesis de los enclaves, distribución y presevación de estos suceda, la génesis de los enclaves ocurrió durante un estado dúctil, ya que, de lo contrario los enclaves máficos no se encontrarían distribuidos aleatoriamente en diferentes unidades del plutón. Además, si la mezcla heterogénea (mingling) de los magmas hubiera ocurrido en un estado en que el magma ácido se encontrara parcialmente cristalizado (un % de cristalización superior a un 35% aproximadamente), se habrían generado fracturas por las cuales el magma básico hubiera ascendido y posteriormente cristalizado en formas de diques (Figura 37) tal como mencionan Barbarin et al., (1992).

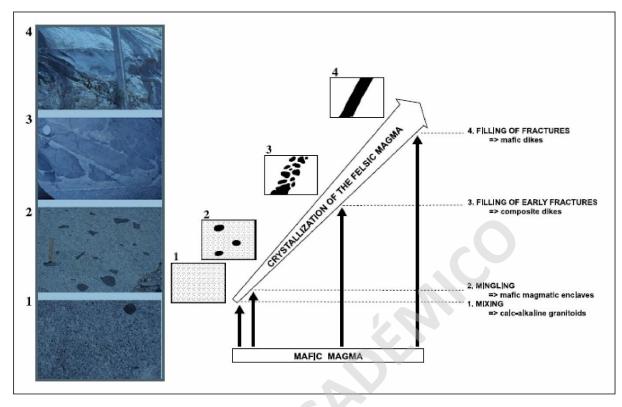


Figura 37. Diferentes etapas de hibridación en la que se forman los enclaves máficos, respecto al grado de cristalinidad que presente el magma ácido durante la inyección de un magma básico (Barbarin et al., 1992).

En algunos sectores del plutón San Gabriel tales como los sitios 19SGI (11, 12, 26 y 27), no presentan enclaves y en algunos sectores como 19SGI(8 y 17) presentan muy pocos enclaves en relación a otros sectores. Esto se podría explicar por el hecho de que el magma básico generador de los enclaves ascendió por fracturas o canales y en un volumen inferior que el magma ácido, provocando que solo en ciertos sectores del plutón estuvieran presentes (Figura 38). Además, la evidencia de que los enclaves se concentren en un mayor contenido en las unidades más diferenciadas, es decir, en las unidades II, III, y P del plutón (Payacán et al., (en prep.), implica que en las unidades más básicas se produzca una mezcla de magmas principalmente homogéneas, tal como sugiere Laumonier et al., (2014).

En esta investigación se desestiman los procesos internos de los reservorios de magma (suponiendo un sistema cerrado) como generadores de los enclaves máficos del plutón San Gabriel, ya que no se reconocen las características mineralógicas y texturales necesarias para sugerir dicha génesis. Por ejemplo, en el modelo de restitas (White y Chappell, 1977) se indica que los enclaves son generados a partir de magmas residuales en los cuales el enclave "crece" a partir de un mineral

núcleo de mayor tamaño. Por otro lado, en el modelo de autolito (Dodge y Kistler, 1990) se propone que los enclaves son generados por el proceso de cristalización fraccionada, los que en un primer estado corresponden a acumulación de anfíbola, biotita y plagioclasa. Debido a que en el plutón San Gabriel el mineral con mayor contenido corresponde a plagioclasa y la única textura de acumulación presente corresponde a piroxenos (Dodge y Kistler, 1990), se descartan estas alternativas.

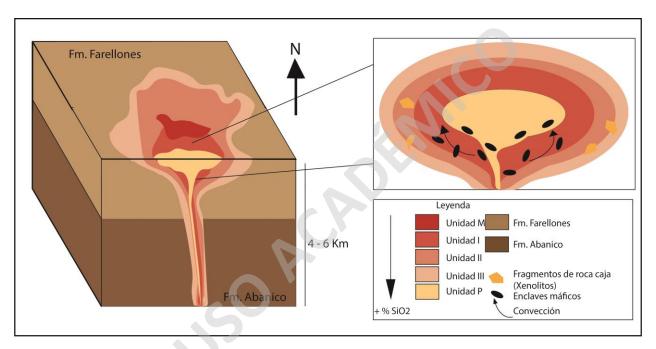


Figura 38. Modelo de génesis de la zona más representativa del plutón San Gabriel (cara sur) basado en el modelo petrográfico de Payacán et al., (en prep) y en la estratigrafía de Fock et al., (2006), En este modelo se explica la relación de temporalidad de los grupos de enclaves previamente definidos.

5.2.2 Relación de deformación y génesis de los enclaves máficos.

La falta de deformación interna de los enclaves, permite sugerir que la deformación que generó la elongación de estos actuó previamente a la formación de los cristales primarios, en este escenario, en una primera instancia se deformo el glóbulo que dio origen al enclave, mientras que el magma inmerso en estos glóbulos aún se encontraba en un estado parcialmente fundido. Esto se puede evidenciar, ya que, estos no presentan indicios de deformación en un estado frágil, es decir, fracturas, deformaciones, o cambios en las lineaciones o foliaciones internas (Figura 39). En el caso que la deformación se hubiera transferido hacia el interior del plutón y los enclaves, los

cristales inmersos en los enclaves presentarían cambios en la lineación y foliación, incluso plegamientos (Figura 40 d) y, como un tercer escenario, si la deformación tuviese un origen externo al sistema magmático y hubiese ocurrido posterior a la cristalización, se encontrarían evidencias de desgarros o fracturas en la forma elipsoidal de los enclaves, mientras que los cristales se encontrarían fracturados (Figura 40 a,b y c), tal como Webber et al., (2015) reconocen en complejo Santo Domingo.

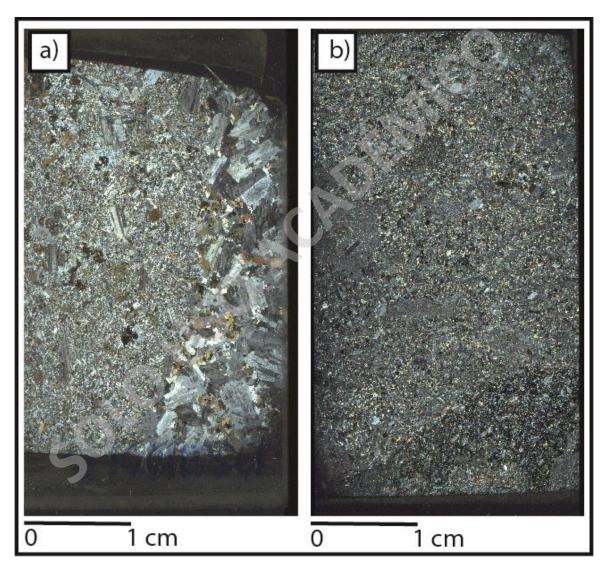


Figura 39. Cortes escaneados sectores 19SGI1001 (a) y 19SGI1201 (b), como se puede observar en ningún caso se observan foliación y lineación de cristales a escala macroscópica y microscópica

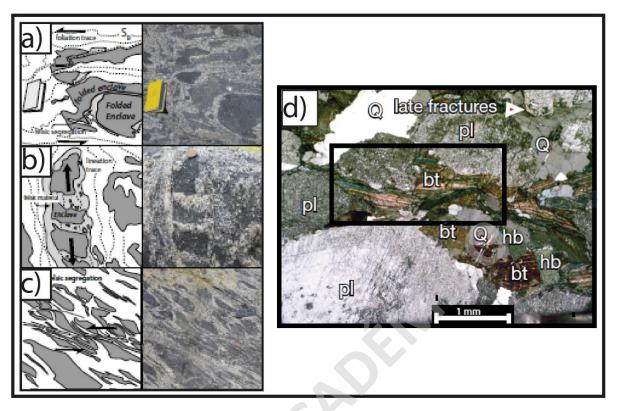


Figura 40. a) Enclaves plegados con material leucocratico concentrado, b) Enclave en forma de *boudinage* producto de deformación tectónica, c) Enclave registra desplazamiento sinestral asociado a zonas de cizalle y d) Cristal de biotita deformado. Figura extraída y modificada de Webber et al., (2015).

5.2.3 Evidencias de enfriamiento y orden de cristalización en enclaves máficos.

Como se ha podido observar, los enclaves presentan texturas intergranulares en las plagioclasas (cristales correspondientes a los originados durante la génesis de los enclaves, no a los fenocristales disgregados por el mingling) el cual es el mineral primario con una mayor abundancia. Esta textura es indicativa de una baja tasa de nucleación, pero un rápido crecimiento cristalino de la plagioclasa respecto a otras fases minerales. De igual manera, las plagioclasas presentes se ven afectadas por cambios en la composición del fundido, a medida que los cristales de plagioclasa van creciendo van incorporando ciertos elementos del fundido, específicamente Ca. Es por ello que a medida que el fundido se empobrece en elementos la plagioclasa utiliza el Na restante, esto provoca zonaciones las cuales pueden ser inversas o normales. Respecto a las acumulaciones de minerales presentes, estos han sido originados por la formación de cúmulos producto del enfriamiento, como "islas" de cristales de un mismo mineral, en este caso de piroxeno (Figura 41) (Winter. J, 2001).

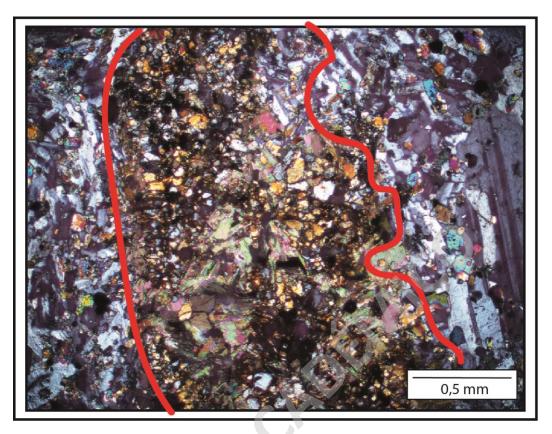


Figura 41. Cúmulos de piroxeno presente en el corte transparente pulido del sector 19SGI0301, nicoles x.

Los minerales presentes en los enclaves máficos del plutón San Gabriel presentan diferentes texturas a escala macroscópica, los enclaves magmáticos cristalinos tienen textura porfírica, mientras que los enclaves microcristalinos una textura afanítica. A escala microscópica se observan texturas intergranulares en plagioclasas con dos familias de granos y textura glomeroporfírica (cúmulos) en minerales máficos, diferenciándose incluso en tamaño, lo que es indicativo que los minerales no cristalizaron bajo condiciones de enfriamiento similares.

Castro et al. (1991) han definido que los enclaves de composiciones tonalíticas o símiles suelen registrar distintas etapas de enfriamiento y cristalización. Durante la primera etapa se generan los fenocristales de plagioclasa y se mezclan con los xenocristales de plagioclasa disgregados desde el granito, los que representan un mayor tiempo de cristalización. Durante esta etapa tambien pueden formarse los piroxenos y una baja cantidad de anfíbolas, debido a que en primera instancia cristalizan los minerales máficos deshidratados y posteriormente los hidratados, los cuales incluso pueden ser xenocristales. En una segunda etapa existe un proceso de cristalización bajo un

enfriamiento relativamente rápido, en la cual cristalizan los minerales máficos hidratados (anfíbola y biotita). La tercera y última etapa corresponde a la cristalización de minerales en intersticios a partir de fluidos residuales. En el caso de los enclaves del plutón San Gabriel, el mineral residual corresponde a cuarzo, el cual presenta un tamaño menor en comparación a los demás minerales (Figura 42).

Finalmente, los minerales secundarios presentes fueron originados producto de alteraciones asociados a procesos hidrotermales de muy baja pervasividad, en los cuales se altera la anfíbola para dar lugar a clorita, biotita secundaria o epidota.

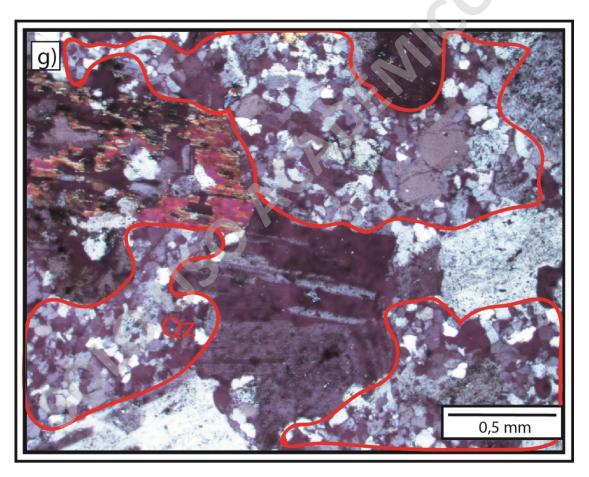


Figura 42. Corte transparente pulido sector 19SGI0202 nicoles x, en el cual se puede observar el mineral que cristaliza en una etapa final (Cuarzo)

5.3 Origen de la deformación registrada por los enclaves máficos del plutón San Gabriel.

La deformación de plutones y otros cuerpos ígneos puede estar generada por mecanismos netamente asociados a estructuras (Webber et al., 2015) o por procesos magmáticos (Carichi et al., 2012) asociados a la dinámica del magma. En el caso de la deformación tectónica (externa al sistema magmático) en ambientes compresivos, las principales evidencias observables a nivel macroscópico son: la presencia de fracturas, diques, enclaves fracturados o deformados. Mientras que a escala microscópica se suele observar la presencia de cristales fracturados, lo que implicaría una deformación del tipo frágil o la presencia de plegamientos, estrechamientos o ensanchamientos en el caso de una deformación del tipo dúctil asociado a procesos externos a la cámara. Por otro lado, en el caso de una deformación de origen magmático la deformación es de estilo dúctil debido a procesos internos del reservorio, tal como la convección interna dentro del reservorio.

Respecto al plutón San Gabriel, los enclaves máficos, tanto magmáticos cristalinos como microcristalinos, presentan en su mayoría formas oblatas ubicados principalmente en la Unidad II y III del plutón San Gabriel (Payacán et al, en prep) lo que implicaría que la mayoría de los enclaves oblatos fueron deformados durante un *strain* del estilo compresivo (Passarelli et al., 2004), mientras que los enclaves prolatos se concentran principalmente en la Unidad P del plutón San Gabriel, su forma está asociada a un *strain* del tipo constricción (Passarelli et al., 2004).

Tanto las formas oblatas como prolatas de los enclaves se encuentran asociadas a un *strain* originado al interior del reservorio. No obstante, la orientación de la mayoría de los enclaves presenta una tendencia vertical a subvertical, lo que implica que las orientaciones fueron producidas durante el ascenso del magma en conjunto con la convección tal como mencionan Webber et al., (2015), producto de un ascenso en forma helicoidal, es decir, los glóbulos de magma básico ascienden respecto a un eje transitorio en forma ondulada (Figura 43), este patrón helicoidal se puede evidenciar al observar la orientación de los ejes de anisotropía de los elipsoides, ya que, a medida que el magma en conjunto con los glóbulos máficos asciende, los elipsoides se orientan de manera tanto manera vertical como horizontal, esto podría explicar además por qué la lineación y foliación de los enclaves presenten tendencias verticales a subverticales. Asumiendo que los enclaves en un estado inicial presentaran una forma esferoidal, la deformación presente de los enclaves fue producida únicamente por un tipo de deformación de origen magmático asociada a procesos convectivos en los que sumado a los contrastes de los magmas y sus características

reológicas durante el mingling, produjo que la deformación ocurriera en un estado dúctil a semidúctil, es decir, contemporáneo a la etapa en la que el plutón se mantenía en un estado termal activo. La deformación de los enclaves no fue originada por un proceso tectónico asociado a esfuerzos por estructuras aledañas al plutón (fallas o plegamientos), debido a que, estos no presentan evidencias tales como fracturamiento o deformación en la forma a escala mesoscópica, mientras que a nivel microscópico los cristales no presentan deformación, fracturamientos o alguna orientación preferencial (lineación/foliación). Además, se ha podido observar que las orientaciones de los elipsoides siguen un patrón de orientación similar a los bordes del plutón San Gabriel, lo que sería un indicador de que a medida que los magmas en conjunto con los glóbulos máficos ascienden, estos se van orientando respecto a los bordes del plutón.

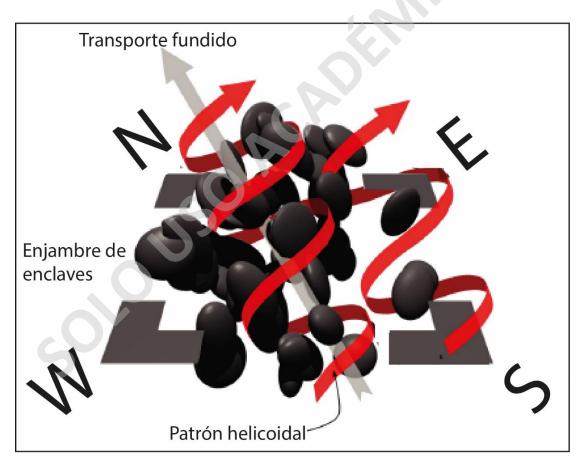


Figura 43. Modelo de transporte helicoidal por el cual el magma asciende propuesto por Webber et al., (2015).

Si bien la orientación del plutón San Gabriel es similar a la de los enclaves máficos, esto no implica que los enclaves fueran deformados por un proceso tectónico, ya que, estos no presentan alguna tendencia en la lineación o foliación de los cristales a nivel microscópico. Este desorden pudo haber sido producto de que en una primera fase los glóbulos que dieron paso a la generación de los enclaves máficos se encontraban internamente en un estado fundido, es por ello que algunos enclaves presentan orientaciones similares al rumbo y bordes del plutón, ya que mientras estos ascendían hacia el reservorio se iban deformando y cambiando su morfología de esferas a elipsoides respetando la forma del plutón (Figura 44). Es por ello que no existen orientaciones preferenciales de los cristales, ya que estos no se ven afectados por esfuerzos asociados a la tectónica que produzca alguna deformación al momento de la cristalización, es decir, en casos similares al plutón San Gabriel la tectónica externa no modifica el registro interno de la deformación debido a que este proceso solo afecto a la "costra" o bordes de los enclaves en un estado inicial, mientras que el interior aún se encontraba fundido.

En conclusión, existieron esfuerzos asociados a la tectónica que controlaron la forma alargada del plutón, pero estos no modificaron el interior de este, es decir, no afectaron al proceso de la evolución del interior del plutón, ya que el interior evoluciona posteriormente.

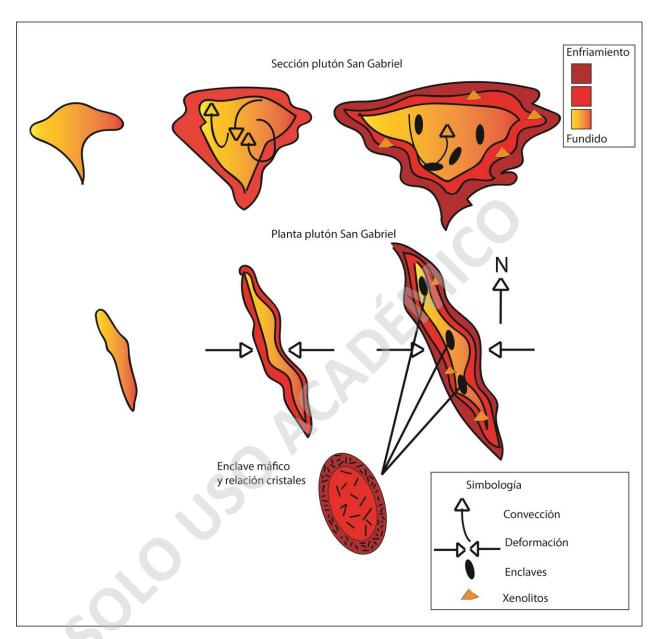


Figura 44. Modelo conceptual en el cual se explica cómo es controlada la forma del Plutón San Gabriel debido a la compresión tectónica (vista en planta), además se explica cómo se genera una costra a medida que el plutón cristaliza, de igual manera se muestra como los enclaves son orientados respecto a la forma del Plutón y de la dinámica del magma al interior, finalmente se muestra como el interior de los enclaves máficos no presentan ningún patrón de orientación respecto a los cristales (lineación o foliación).

5.4 Geometría del Plutón San Gabriel.

Respecto a la geometría del plutón, este presenta una forma alargada con una orientación NNO consistente con las estructuras presentes hacia el E y O del plutón y su orientación coincide con la dirección ortogonal a la definida por el campo de *stress* regional dado por la convergencia de las placas de Nazca y Sudamericana.

Estudios recientes mediante modelos análogos que explican el emplazamiento de cuerpos ígneos en ambientes compresivos (Montanari, D et al., 2010; Ferré, E. 2012) similares a la génesis del plutón San Gabriel respecto al ambiente tectónico, estos estudios indican la probabilidad de que la forma alargada que presenta este plutón sea producto de una tasa de inyección magmática lenta, ya que si la tasa de inyección fuera rápida, el plutón presentaría una forma circular (Figura 45). Además, como se menciona la tectónica controla la evolución de los reservorios magmáticos mediante los esfuerzos y las tasas de inyección, finalmente cabe destacar que en ambos modelos análogos la roca de caja (arena) presenta una isotropía regular, mientras que en el caso del plutón San Gabriel, las rocas de caja en la cual se emplazó el plutón presenta diferentes anisotropías, además internamente presenta diferencias respecto a las condiciones reológicas, estructurales y petrográficas.

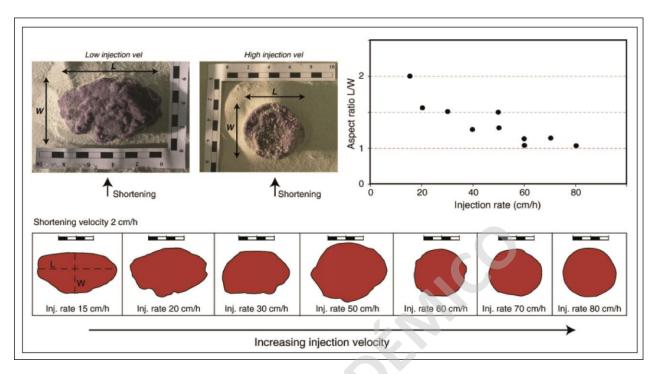


Figura 45. Modelo análogo en el cual se explica la forma que obtiene un cuerpo ígneo, respecto a las tasas de inyección magmática, como se puede observar si la tasa de inyección es lenta, el plutón presentara una forma más elongada, mientras que, si la tasa de inyección es rápida, el plutón presentara una forma circular, figura extraída de Montanari, D. et al., (2010).

Como se ha podido observar, las principales evidencias encontradas permiten interpretar que no existio un efecto asociado a estructuras tectónicas durante la génesis de los enclaves máficos, ya que como se mencionó anteriormente la tectónica afecta solo a la forma del plutón, ya que el interior de este evoluciono posteriormente.

La mayoría de los enclaves máficos presentan una orientación similar a la orientación del plutón, no obstante, esta implicancia tectónica se desestima, ya que, como menciona Vernon (1988) para que existiera una deformación tectónica asociada a los enclaves, estos deberían presentar aparte de la deformación en la forma un cierto lineamiento de múltiples enclaves. Si bien durante la observación in situ del plutón San Gabriel se encontraron planos de falla, y zonas de debilidad a nivel local, se ha podido determinar que este efecto de estructuras tectónicas ocurrió posterior a la génesis del plutón, ya que las fallas que se encuentran cortando algunas unidades del plutón incluso con enclaves máficos en las zonas aledañas.

6 Conclusiones.

El plutón San Gabriel presenta enclaves máficos los cuales presentan variabilidad, es decir, no todos son similares, es por esto que los enclaves fueron caracterizados en 2 grupos basados en las características morfológicas y petrográficas principalmente.

La principal diferencia es la morfología y sus características texturales, ya que, los enclaves magmáticos cristalinos presentan bordes redondeados a subredondeados asociados a composiciones dioríticas, cuarzodioríticas y en muy bajo contenido tonalíticas y texturas a escala macroscópico porfírica. Mientras que los enclaves microcristalinos corresponden a xenolitos con bordes subangulosos a angulosos asociados a composiciones similares a las rocas de caja donde el plutón se encuentra emplazado, es decir, cuarzodioritas y tonalitas con texturas a escala macroscópica del tipo afanítica.

Los enclaves magmáticos cristalinos se concentran en las unidades P y III del plutón, es decir, en las unidades intrusivas centrales del plutón, las que presentan una composición intermedia (>%SiO₂). Esto indica que en las unidades más diferenciadas del plutón se produjo *mingling* o una mezcla heterogénea de magmas, lo que en conjunto con la dinámica del emplazamiento generó que los enclaves obtuvieran una orientación principalmente vertical a subvertical en la mayoría de las zonas. Respecto a los enclaves microcristalinos o xenolitos, estos se concentran principalmente en la Unidad II del plutón San Gabriel, fueron generados previo a la génesis de los enclaves cristalinos, producto del emplazamiento del magma bajo las formaciones Farellones y Abanico, lo que produjo el fracturamiento de la roca de caja y posteriormente por la dinámica interna del plutón. Estos fueron orientados y distribuidos en las diferentes ubicaciones de esta unidad. En algunos sectores se encontraron enclaves residuales, es decir, enclaves compuestos por minerales tardíos como turmalina y feldespato potásico. Estos presentaban una muy baja concentración y su génesis está relacionada únicamente a procesos en el que los fluidos tardíos enriquecidos se concentran y posteriormente rellenan cavidades.

En cuanto a la temporalidad de la génesis respecto a los grupos de enclaves previamente definidos, el primer grupo en ser originado corresponde a los enclaves microcristalinos, debido a que estos fueron generados producto del emplazamiento del magma en la roca de caja, provocando que se desprendieran fragmentos de este hacia el reservorio por el proceso de *stoping*. Mientras

que en una segunda etapa se originaron los enclaves magmáticos cristalinos producto de la mezcla heterogénea de magma o *mingling*.

La forma alargada del plutón San Gabriel se encuentra controlada principalmente por factores tectónicos asociados a las dinámicas de esfuerzos compresivos en conjunto con una tasa de inyección magmática relativamente baja, ya que de lo contrario este hubiera presentada una forma similar a un círculo.

Respecto a la deformación presente y registrada en los enclaves máficos, este indica que es del tipo magmático, donde producto del ascenso magmático a través de zonas de fracturas, la convección del magma en conjunto de patrones helicoidales de ascenso magmático provocó que los enclaves presenten una deformación con una morfología principalmente elipsoidales. Las orientaciones de los enclaves fueron generadas bajo influencia de la forma del plutón (orientación NNO), ya que, como se pudo observar en la caracterización de las orientaciones de los enclaves, estos se encuentran orientados en su mayoría hacia el NNO, respecto a la ubicación de los enclaves. Estos se concentran aleatoriamente en las unidades P, II y III del Plutón, esto quiere decir que el proceso de la génesis de los enclaves ocurrió cuando tanto el magma básico como el ácido presentaban una baja viscosidad, es decir existía un bajo contenido de cristales (<30 – 35% Cx).

Finalmente respondiendo a la hipótesis, la deformación de ambos grupos de enclaves máficos ocurrió debido a un efecto principalmente de origen magmático durante una fase principalmente fundida, con un bajo % de cristalización, una vez estos grupos de enclaves se situaron en un lugar específico, respetaron la forma del plutón, ya que en su mayoría estos presentan una orientación similar al rumbo del plutón San Gabriel.

6.1 Recomendaciones.

A modo de recomendación en este estudio con la finalidad de mejorar y detallar de mejor manera este, se proponen los siguientes análisis:

- Análisis geoquímicos con la finalidad de determinar y confirmar los tipos de magmas generadores de los enclaves respecto al plutón San Gabriel, además de acotar los campos de

estos magmas en diagramas TAS (*total alkali- silica*), según series magmáticas y determinar el contenido de elementos mayores/ menores como por ejemplo gráficos Harker.

- Análisis de proveniencia respecto a minerales como el circón, con la finalidad de corroborar la proveniencia de los enclaves microcristalinos respecto a la roca de caja de las formaciones Abanico y Farellones
- Datación geocronológica mediante datación de minerales máficos provenientes del plutón San Gabriel y enclaves ubicados en diferentes zonas del plutón con la finalidad de determinar temporalidades respecto a la génesis de estos.

7 Referencias.

- Alvarado, F. 2016. Evolución Tectonoestratigráfica de la cordillera principal occidental, entre 34°20′S y 34°40′S, Chile central. Tesis de Magister en Ciencia Mención Geología, Universidad de Chile.
- Araneda, M., Avendaño, M., Merlo, C., 2000. Modelo gravimétrico de la Cuenca de Santiago, etapa II final. IX Congreso Geológico Chileno, Puerto Varas, pp. 404-408
- Armijo, R., Rauld, R., Thiele, R., Vargas, G., Campos, J., Lacassin, R., Kausel, E., 2010. The West Andean Thrust, the San Ramon Fault, and the seismic hazard for Santiago, Chile.
- Aubouin, J; Borrello, A; Cecioni, G; Charrier G; Chotin, P; Frutos, J; Thiele, R; Vicente, J. 1973. Esquisse Paléogéographique et structurale des Andes Méridionales. Revue de Géographie Physique et de Géologie Dynamique v.15 (fasc.1-2):pp.11-72.
- Barbarin, B., Didier, J., 1992. Genesis and evolution of mafic microgranular enclaves through various types of interaction between coexisting felsic and mafic magmas. Transactions of the Royal Society of Edinburgh: Earth Sciences 83, 145–153.
- Bergantz, G. et al., 1991. Magmatic processes. Eos, Vol. 72, No. 8.
- Best, M. 2003. Igneous and metamorphic petrology second edition. Blackwell Publishing.
- Castro, A.; Moreno Ventas, I.; de la Rosa, J.D. 1991, Multistage crystallization of tonalitic enclaves in granitoid rocks (Hercynian belt, Spain): implications for magma mixing. Geologische Rundschau 80 (1): 109 120.
- Caricchi, L., Annen, C., Rust, A., & Blundy, J. (2012). Insights into the mechanisms and timescales of pluton assembly from deformation patterns of mafic enclaves. Journal of Geophysical Research: Solid Earth, 117(B11)
- Cembrano, J., Lavenu, A., Yanez, G., Riquelme, R., Garcia, M., Gonzalez, G., Herail, G., 2007. Neotectonics. In: Moreno, T., Gibbons, W. (Eds.), The Geology of Chile. The Geological Society, London, pp. 231–261.
- Chappell, B.W.; White, A.; Wyborn, D. 1987, The importance of residual source material (restite) in granite petrogenesis. J. Petrol. 28, 1111 1138.
- Charrier, R., Baeza, O., Elgueta, S., Flynn, J. J., Gans, P., Kay, S. M., Muñoz, N., Swisher, C. C. III, Wyss, A. R. and Zurita, E., 2002. Evidence for extensional basin development and tectonic

- inversion in the southern central Andes, Chile (33°-36° S). Journal of South American Sciences, Vol 15, N° 1, p. 117-139.
- Deckart, K. et al., 2010. Barren Miocene granitoids in the Central Andean metallogenic belt, Chile: Geochemistry and Nd-Hf and U-Pb isotope systematics. Andean Geology, vol. 37, no. 1, p. 1-31.
- Ferré, E. C., Galland, O., Montanari, D., & Kalakay, T. J. (2012). Granite magma migration and emplacement along thrusts. International Journal of Earth Sciences, 101(7), 1673 1678.
- Flinn, D., 1978. Construction and computation of three-dimensional deformations. Journal of the Geological Society of London, 135, p. 291-305.
- Fock, A., Charrier, R., Farías, M.y Muñoz, M., 2006. Fallas de vergencia oeste en la Cordillera Principal de Chile Central: Inversión de la cuenca de Abanico (33°-34°S). Revista de la Asociación Geológica Argentina, Publicación Especial 6, 48-55.
- Frost, T.; Mahood, G. 1987, Field, chemical, and physical constraints on mafic felsic magma interaccion in the Lamarck Granodiorite, Sierra Nevada, California. Geological Society of American Bulletin 99(2), 272 291
- Glazner, A. F., Bartley, J. M., Coleman, D. S., Gray, W., & Taylor, R. Z. (2004). ¿Are plutons assembled over millions of years by amalgamation from small magma chambers? GSA Today, 14(4), 4.
- Godoy, E., Yañez, G. y Vera, E., 1999. Inversion of an Oligocene volcano-tectonic basin and uplifting of its superimposed Miocene magmatic arc in the Chilean Central Andes: first seismic and gravity evidences: Tectonophysics, v. 306, p. 217–236.
- Kay, S. M., Godoy, E., Kurtz, A. 2005. Episodic arc migration, crustal thickening, subduction erosion, and magmatism in the south-central Andes. Geological Society of America Bulletin, vol. 117, no. 1-2, p. 67-88.
- Khazaradze, G., Klotz, J., 2003. Short- and long-term effects of GPS measured crustal deformation rates along the south central Andes. J. Geophys. Res. 108, 2289,
- Kurtz, A., Kay, S.M., Charrier, R. & Farrar, E. 1997. Geochronology of Miocene plutons and exhumation history of the El Teniente region, Central Chile (34°-35°S). Revista Geológica de Chile. Vol 24.

- Laumonier, M., Scaillet, B., Pichavant, M., Champallier, R., Andujar, J., & Arbaret, L. (2014). On the conditions of magma mixing and its bearing on andesite production in the crust. Nature Communications, 5(1).
- Montanari, D., Corti, G., Sani, F., Del Ventisette, C., Bonini, M., & Moratti, G. 2010. Experimental investigation on granite emplacement during shortening. Tectonophysics, 484(1-4), 147–155.
- Oliveros, V., Vásquez, P., Creixell, C., Lucassen, F., Ducea, M. N., Ciocca, I., ... Kasemann, S. A. (2019). Lithospheric evolution of the Pre- and Early Andean convergent margin, Chile. Gondwana Research.
- Pasarelli, C., Stipp, M., Costa, M. 2004. Geocronologia e geologia isotopica dos terrenos Pré-Cambrianos da porcao Sul – Oriental do Estado de Sao Paulo. Revista do Instituto de Geociencias - USP.vol 4.
- Paterson, S.R., and Vernon, R.H. 1995. Bursting the bubble of ballooning plutons: A return to nested diapirs emplaced by multiple processes. Geological Society of America Bulletin, 107, 11, 1356–1380.
- Payacan, I., Pizarro, B., Gutierrez, F. en prep. Mafic enclaves within the upper crustal intermediate pluton San Gabriel (central Chile): inferences on the rheological architecture of a magma reservoir.
- Peña, T. 2014. Revisión documental sobre la dinámica de los magmas. Centro de Geociencias, UNAM, 76230, Querétaro, México.
- Petford, N., Cruden, A. R., McCaffrey, K. J. W., & Vigneresse, J.-L. (2000). Granite magma formation, transport and emplacement in the Earth's crust. Nature, 408(6813), 669–673.
- Ramos, V. 1989. The Birth of Southern South America. The Birth of Southern South America. American Scientist. Vol. 77, No 5, p. 444-450.
- Robin, P.F., 2002. Determination of fabric and strain ellipsoids from measured sectional ellipses theory. Journal of Structural Geology 24, 531-544.
- Shan, Y., 2008. An analytical approach for determining strain ellipsoids from measurements on planar surfaces. Journal of Structural Geology 30, 539-546.
- Scheuber, E., & Gonzalez, G. (1999). Tectonics of the Jurassic-Early Cretaceous magmatic arc of the north Chilean Coastal Cordillera (22°-26°S): A story of crustal deformation along a convergent plate boundary. Tectonics, 18(5), 895–910.

- Tapia, F. 2015, Evolución tectónica y configuración actual de los Andes Centrales del Sue (34°45′-35°30′S). Tesis de Doctorado en Ciencias Mención Geología, Universidad de Chile.
- Thiele, R. 1980. Hoja Santiago, Región Metropolitana. Servicio Nacional de Geología y Mineria, Carta Geológica de Chile N°29. 51 p.
- Vassallo, J.J., Wilson, C.J.L., 2002. Palaeoproterozoic regional-scale noncoaxial deformation: an example from eastern Eyre Peninsula, South Australia. Journal of Structural Geology 24 (1), 1–24.
- Varas, M. 2011. Naturaleza, distribución especial e implicaciones petrogeneticas de los enclaves máficos microgranulares del complejo plutónico Illapel, cordillera de la costa, Chile central. Tesis de Magister en Ciencia Mención Geología, Universidad de Chile.
- Vernon, R. H., Etheridge, M. A., & Wall, V. J. (1988). Shape and microstructure of microgranitoid enclaves: Indicators of magma mingling and flow. Lithos, 22(1), 1–11.
- Vernon, R. H. 2004, A Practical Guide to Rock Microstructure, Oxford University Press: pp. 606, Oxford.
- Vigneresse, J.L. 1995b. Crustal regime of deformation and ascent of granitic magmas. Tectonophysics 249, 187–202.
- Villela, D. 2015. Desarrollo estructural de la cordillera principal al suroeste del río Maipo, sector del Ingenio, Región Metropolitana, Chile (33°40′-33°50′S). Tesis de Magister en Ciencia Mención Geología, Universidad de Chile.
- Webber, J. R., Klepeis, K. A., Webb, L. E., Cembrano, J., Morata, D., Mora-Klepeis, G., & Arancibia, G. (2015). Deformation and magma transport in a crystallizing plutonic complex, Coastal Batholith, central Chile. Geosphere, 11(5), 1401–1426.
- Winter, J. 2001. An introduction to igneous and metamorphic petrology. Prentice hall.
- Zak, J., Paterson, S. R., & Memeti, V. (2007). Four magmatic fabrics in the Tuolumne batholith, central Sierra Nevada, California (USA): Implications for interpreting fabric patterns in plutons and evolution of magma chambers in the upper crust. Geological Society of America Bulletin, 119(1-2), 184–201.

Tabla estadística: cuantificación y caracterización pluton San Gabriel.

8

Anexos.

		Datos		Ubica (UT			Código)			Caracte	erísticas		
Sector	Dipdir	Dip	Rake	Norte	Este	Mue stra man o	Foto	Mues tra testig o	Form a	Bordes	T.eje mayor	T.eje menor	Relac ión de aspec to	Tipo de enclave
	345	57	31				1627		Elips e	B.redo ndos	8	5	1,6	Magmá tico cristali no
	355	75	69				1635		Oval ada	B.redo ndos	9,4	3,1	3,0	Magmá tico cristali no
	340	80	65				1631		Oval ada	B.redo ndos	7	4,8	1,5	Magmá tico cristali no
	330	61	40				1632	-5	Oval ada	B.redo ndos	8,8	6,5	1,4	Magmá tico cristali no
	334	70	50				1633		Oval ada	B.redo ndos	9,8	5,4	1,8	Magmá tico cristali no
1000101	355	46	60	6261	3872	19S GI0 101 E	1630		Oval ada	B.redo ndos	10	4,2	2,4	Magmá tico cristali no
19SGI01	350	50	45	028	11	19S GI0 102 E	1634		Oval ada	B.redo ndos	10,7	4,3	2,5	Magmá tico cristali no
	340	46	128				1626		Oval ada	B.redo ndos	6,2	4	1,6	Magmá tico cristali no
	204	70							Circu lar	B.redo ndos	8,2	6,1	1,3	Magmá tico cristali no
	190	55	0				1636		Oval ada	B.redo ndos	6,3	6,4	1,0	Magmá tico cristali no
	215	63							Elips e	B.redo ndos	7,5	6	1,3	Magmá tico cristali no
	195	50							Elips e	B.redo ndos	6,7	3,2	2,1	Magmá tico cristali no

	203	65	15				1825		Elips e	B.redo ndos	6,8	3,1	2,2	Magmá tico cristali no
	194	73	28				1826		Elips e	B.redo ndos	6,8	3,7	1,8	Magmá tico cristali no
	215	45	30				1827		Elips e	B.redo ndos	7,2	5,4	1,3	Magmá tico cristali no
	228	65	45				1828		Elips e	B.redo ndos	5	3,8	1,3	Magmá tico cristali no
	190	43	50				1637		Elips e	B.redo ndos	5,5	6,4	0,9	Magmá tico cristali no
	187	58							Elips e	B.redo ndos	7	4,6	1,5	Magmá tico cristali no
Sector	Dipdir	Dip	Rake	Norte	Este	Mue stra	Foto	Mues tra testig o	Form a	Bordes	Tam.ej e mayor	Tam.ej e menor	Relac ión de aspec to	Tipo de enclave
	237	68	129				1639		Circu lar	B.redo ndos	4,4	4,2	1,0	Magmá tico cristali no
	240	73	114				1640		Elips e	B.redo ndos	7,3	2,5	2,9	Magmá tico cristali no
	250	75						19SG 10201	Elips e	B.redo ndos	5,8	2,3	2,5	Magmá tico cristali no
19SGI02	216	55	35	6261	3868	19S GI0	1830	TE 19SG 10202 TE	Elips e	B.redo ndos	7,5	3,1	2,4	Magmá tico cristali no
	223	48	61	201	31	201 E	1833	19SG 10203 ATE 19SG	Elips e	B.redo ndos	5,4	3	1,8	Magmá tico cristali no
	217	60						I0203 BTE	Elips e	B.redo ndos	5,8	2,1	2,8	Magmá tico cristali no
	223	70	63				1834		Elips e	B.redo ndos	7,7	2,3	3,3	Magmá tico cristali no
	230	66							Elips e	B.redo ndos	6,4	4,4	1,5	Magmá tico cristali no

215	60	44			1839		Oval ada	B.redo ndos	5,6	2,2	2,5	Magmá tico cristali no
208	60						Oval ada	B.redo ndos	7,6	4,8	1,6	Magmá tico cristali no
210	73						Oval ada	B.redo ndos	7,9	4,1	1,9	Magmá tico cristali no
223	69						Oval ada	B.redo ndos	6,6	2,7	2,4	Magmá tico cristali no
235	77	59			1837		Oval ada	B.redo ndos	7,8	2,4	3,3	Magmá tico cristali no
228	80	33			1841		Oval ada	B.redo ndos	7,8	2,5	3,1	Magmá tico cristali no
211	70	60			1846	?	Oval ada	B.redo ndos	4,6	3,6	1,3	Magmá tico cristali no
250	80				C		Oval ada	B.redo ndos	6,8	2,6	2,6	Magmá tico cristali no
195	60		C	C			Oval ada	B.redo ndos	4,4	3,2	1,4	Magmá tico cristali no
230	50		5				Oval ada	B.redo ndos	5,4	3,3	1,6	Magmá tico cristali no
245	52						Oval ada	B.redo ndos	4,2	2,7	1,6	Magmá tico cristali no
230	45	70			1840		Oval ada	B.redo ndos	6,4	2,9	2,2	Magmá tico cristali no
190	58	66			1842		Oval ada	B.redo ndos	5,2	3	1,7	Magmá tico cristali no
195	55	29			1843		Oval ada	B.redo ndos	6,4	2,8	2,3	Magmá tico cristali no
227	88	36			1845		Oval ada	B.redo ndos	5,7	3	1,9	Magmá tico cristali no
230	85	27			1641		Oval ada	B.redo ndos	10,6	4,3	2,5	Magmá tico

											cristali
225	87	84		1848		Oval ada	B.redo ndos	7	3,8	1,8	no Magmá tico cristali no
231	80					Oval ada	B.redo ndos	4,2	4,9	0,9	Magmá tico cristali no
233	78					Oval ada	B.redo ndos	7,8	4,7	1,7	Magmá tico cristali no
225	75					Oval ada	B.redo ndos	6,6	2,3	2,9	Magmá tico cristali no
270	70					Oval ada	B.redo ndos	6,2	3,1	2,0	Magmá tico cristali no
263	75					Oval ada	B.redo ndos	4	3,5	1,1	Magmá tico cristali no
270	68				S	Oval ada	B.redo ndos	7	2,5	2,8	Magmá tico cristali no
272	69			8		Oval ada	B.redo ndos	4,7	4,1	1,1	Magmá tico cristali no
279	75		C			Oval ada	B.redo ndos	6,2	3,5	1,8	Magmá tico cristali no
265	77					Oval ada	B.redo ndos	5,8	3,4	1,7	Magmá tico cristali no
268	63					Oval ada	B.redo ndos	6,2	2,8	2,2	Magmá tico cristali no
226	60					Oval ada	B.redo ndos	5,6	3,6	1,6	Magmá tico cristali no
215	73					Oval ada	B.redo ndos	6,8	3,5	1,9	Magmá tico cristali no
218	71	69		1849		Oval ada	B.redo ndos	5,4	2,1	2,6	Magmá tico cristali no
220	72	38		1642		Elips e	B.redo ndos	5,5	2,1	2,6	Magmá tico cristali no

	225	75	15				1851		Oval ada	B.redo ndos	4,2	2,6	1,6	Magmá tico cristali no
	228	72	75				1852		Oval ada	B.redo ndos	6	2,6	2,3	Magmá tico cristali no
	220	80							Oval ada	B.redo ndos	5,5	2,1	2,6	Magmá tico cristali no
	223	76							Oval ada	B.redo ndos	6	2,6	2,3	Magmá tico cristali no
Sector	Dipdir	Dip	Rake	Norte	Este	Mue stra	Foto	Mues tra testig o	Form a	Bordes	Tam.ej e mayor	Tam.ej e menor	Relac ión de aspec to	Tipo de enclave
	250	43							Oval ada	B.redo ndos	4,1	3,7	1,1	Magmá tico cristali no
	251	50						1	Oval ada	B.redo ndos	8,5	3,2	2,7	Magmá tico cristali no
	243	55					8		Oval ada	B.redo ndos	6,6	2,7	2,4	Magmá tico cristali no
	255	47			C			19SG 11901 TE 19SG	Oval ada	B.redo ndos	7,4	3,6	2,1	Magmá tico cristali no
19SGI03	270	60		6261	3865	19S GI0		11902 TE 19SG 11903	Oval ada	B.redo ndos	8,5	6,5	1,3	Magmá tico cristali no
1930103				479	37	301 E		TE 19SG 11904 TE		B.redo ndos	7,4	3,4	2,2	Magmá tico cristali no
	105	65						19SG 11905 TE	Oval ada	B.redo ndos	6,8	2,5	2,7	Magmá tico cristali no
	120	60							Oval ada	B.redo ndos	6,1	2,3	2,7	Magmá tico cristali no
	110	58							Oval ada	B.redo ndos	5,5	2	2,8	Magmá tico cristali no
	115	63							Oval ada	B.redo ndos	8	3,2	2,5	Magmá tico cristali no

122	75					Oval ada	B.redo ndos	5,5	3,2	1,7	Magmá tico cristali no
							B.redo ndos	6,7	3	2,2	Magmá tico microcr istalino
234	80					Oval ada	B.redo ndos	4,7	2,4	2,0	Magmá tico microcr istalino
240	77	63				Oval ada	B.redo ndos	5,6	2,2	2,5	Magmá tico microcr istalino
237	74	54				Oval ada	B.redo ndos	4,2	3,8	1,1	Magmá tico microcr istalino
250	83					Oval ada	B.redo ndos	3,5	1,7	2,1	Magmá tico microcr istalino
243	75	22				\$ Oval ada	B.redo ndos	6,3	2,8	2,3	Magmá tico microcr istalino
238	85	3			1661	Oval ada	B.redo ndos	2,3	1,5	1,5	Magmá tico microcr istalino
243	80	15	C	C		Oval ada	B.redo ndos	4,7	3,1	1,5	Magmá tico cristali no
			5				B.redo ndos	7	6,5	1,1	Magmá tico cristali no
265	50					Oval ada	B.redo ndos	6,8	3,6	1,9	Magmá tico cristali no
273	44					Oval ada	B.redo ndos	5,1	2	2,6	Magmá tico cristali no
261	40					Oval ada	B.redo ndos	6	3,4	1,8	Magmá tico cristali no
263	38					Oval ada	B.redo ndos	5,1	3,6	1,4	Magmá tico cristali no
264	45	10				Oval ada	B.redo ndos	8,7	6,6	1,3	Magmá tico cristali no
270	51	55				ada	ndos	7,3	1,4	5,2	Magmá tico

														cristali no
	245	50	79				1662		Oval ada	B.redo ndos	7	3,4	2,1	Magmá tico cristali no
	253	54	49						Oval ada	B.redo ndos	4,6	1,5	3,1	Magmá tico cristali no
	266	53	22						Oval ada	B.redo ndos	8,2	3,7	2,2	Magmá tico cristali no
	253	55	45						Oval ada	B.redo ndos	6,2	3,7	1,7	Magmá tico cristali no
	261	58	16						Oval ada	B.redo ndos	4,2	2,7	1,6	Magmá tico cristali no
	267	49							Oval ada	B.redo ndos	6,7	3,6	1,9	Magmá tico cristali no
	270	53						C	Oval ada	B.redo ndos	7,4	4,2	1,8	Magmá tico cristali no
	265	54					P		Oval ada	B.redo ndos	6,7	2,6	2,6	Magmá tico cristali no
Sector	Dipdir	Dip	Rake	Norte	Este	Mue stra	Foto	Mues tra testig o	Form a	Bordes	Tam.ej e mayor	Tam.ej e menor	Relac ión de aspec to	Tipo de enclave
	140	60							Elips e	B.redo ndos	4,4	2	2,2	Magmá tico cristali no
	133	63							Elips e	B.redo ndos	4,8	2,1	2,3	Magmá tico cristali no
19SGI04	135	58	80	6261 588	3864 46				Elips e	B.redo ndos	6,3	4,1	1,5	Magmá tico cristali no
	145	55	75						Elips e	B.redo ndos	6,5	4,7	1,4	Magmá tico cristali no
	148	62	33						Circu lar	B.redo ndos	3,5	3	1,2	Magmá tico cristali no
	140	50	50				1665		Elips e	B.redo ndos	6,5	3,7	1,8	Magmá tico

														microcr istalino
	137	60							Elips e	B.redo ndos	3,2	2,6	1,2	Magmá tico cristali no
	135	70	138				1666		Elips e	B.redo ndos	4,3	3,3	1,3	Magmá tico microcr istalino
	129	68							Elips e	B.redo ndos	6,4	3,6	1,8	Magmá tico cristali no
	115	65	70						Elips e	B.redo ndos	5,5	2,3	2,4	Magmá tico cristali no
	120	60	125						Elips e	B.redo ndos	5,4	4,2	1,3	Magmá tico cristali no
	130	73							Circu lar	B.redo ndos	3,7	3,3	1,1	Magmá tico cristali no
	133	75						C	Elips e	B.redo ndos	5,4	2,8	1,9	Magmá tico cristali no
	215	60					8		Elips e	B.redo ndos	4,3	3,5	1,2	Magmá tico microcr istalino
	223	70	69		C				Elips e	B.redo ndos	4,7	2	2,4	Magmá tico microcr istalino
	209	68	121						Elips e	B.redo ndos	6,2	3	2,1	Magmá tico microcr istalino
	213	60							Elips e	B.redo ndos	5,8	4	1,5	Magmá tico microcr istalino
	220	63							Elips e	B.redo ndos	5,6	4,3	1,3	Magmá tico microcr istalino
Sector	Dipdir	Dip	Rake	Norte	Este	Mue stra	Foto	Mues tra testig o	Form a	Bordes	Tam.ej e mayor	Tam.ej e menor	Relac ión de aspec to	Tipo de enclave
19SGI05	175	25	169	6261 656	3863 96	19S GI0 501	1673		Circu lar	B.redo ndos	6,1	6,6	0,9	Magmá tico microcr istalino
	185	22	97			Е	1674		Circu lar	B.redo ndos	6,4	6	1,1	Magmá tico

Ì						1						microcr
												istalino
	179	20					Circu	B.redo	10	4.2	1,1	Magmá tico
	1/9	20					lar	ndos	4,8	4,3	1,1	microcr
												istalino Magmá
	187	23					Circu	B.redo	5,5	5,6	1,0	tico
	107	23					lar	ndos	3,3	3,0	1,0	microcr istalino
												Magmá
	173	27					Circu	B.redo	4,5	4,4	1,0	tico
							lar	ndos				microcr istalino
												Magmá
	225	89	90		1675		Circu lar	B.redo ndos	4	4,4	0,9	tico microcr
							Tai	ndos				istalino
							C:	D d .				Magmá tico
	230	85	47				Circu lar	B.redo ndos	6,7	6,5	1,0	microcr
												istalino
							Elips	B.redo				Magmá tico
	233	90	88				e	ndos	4,3	3,8	1,1	microcr
												istalino
	227	90					Circu	B.redo	4.2	2.7	1.0	Magmá tico
	227	80					lar	ndos	4,3	2,7	1,6	microcr
												istalino Magmá
	235	83					Elips	B.redo	5,8	4	1,5	tico
							e	ndos	- ,-		,-	microcr istalino
												Magmá
	231	84					Circu lar	B.redo ndos	6	6,8	0,9	tico microcr
							lai	iidos				istalino
							EI.	D 1				Magmá
	228	86					Elips e	B.redo ndos	5,4	4,8	1,1	tico microcr
												istalino
							Circu	B.redo				Magmá tico
	230	85					lar	ndos	5,3	5,4	1,0	microcr
												istalino
	222	70					Circu	B.redo	5.1	5.0	1.0	Magmá tico
	232	79					lar	ndos	5,1	5,2	1,0	microcr
												istalino Magmá
	231	85					Elips	B.redo	4,2	3,5	1,2	tico
	231	0.5					e	ndos	7,2	3,3	1,2	microcr istalino
						1						Magmá
	232	87					Circu	B.redo	3,3	3,7	0,9	tico
							lar	ndos	,-	,	7-	microcr istalino
						1						Magmá
	185	45					Elips e	B.redo ndos	5,5	4	1,4	tico microcr
								nuos				istalino
I	1	1	1	 							l:	

	193	48	84						Circu lar	B.redo ndos	5,3	5,3	1,0	Magmá tico microcr istalino
	180	40							Elips e	B.redo ndos	6,6	2	3,3	Magmá tico microcr istalino
	193	46	12						Elips e	B.redo ndos	5	3,6	1,4	Magmá tico microcr istalino
	179	39	69						Circu lar	B.redo ndos	5,2	5,5	0,9	Magmá tico microcr istalino
	182	50	46						Circu lar	B.redo ndos	5,1	5,8	0,9	Magmá tico microcr istalino
	185	36							Circu lar	B.redo ndos	4,1	4,4	0,9	Magmá tico microcr istalino
Sector	Dipdir	Dip	Rake	Norte	Este	Mue stra	Foto	Mues tra testig o	Form a	Bordes	Tam.ej e mayor	Tam.ej e menor	ión de aspec to	Tipo de enclave
	100	65					8		Elips e	B.redo ndos	10,7	7,5	1,4	Magmá tico cristali no
	97	64	1		C		1679		Elips e	B.redo ndos	13,1	10	1,3	Magmá tico cristali no
	105	60	31						Elips e	B.redo ndos	8,3	5,5	1,5	Magmá tico cristali no
19SGI06	115	63		6261 643	3858 27	19S GI0 601			Elips e	B.redo ndos	6,7	5,8	1,2	Magmá tico microcr istalino Magmá
	105	68	83	043	21	E	1682		Elips e	B.redo ndos	6,4	3,1	2,1	tico microcr istalino Magmá
	245	88	78				1680		Elips e	B.redo ndos	4,3	2	2,2	tico microcr istalino Magmá
	250	90							Elips e	B.redo ndos	5,3	3,2	1,7	tico microcr istalino Magmá
	243	85	16						Elips e	B.redo ndos	5,5	4,6	1,2	tico microcr istalino

	240	90	133				1681		Elips e	B.redo ndos	8	6,1	1,3	Magmá tico microcr istalino
Sector	Dipdir	Dip	Rake	Norte	Este	Mue stra	Foto	Mues tra testig o	Form a	Bordes	Tam.ej e mayor	Tam.ej e menor	Relac ión de aspec to	Tipo de enclave
	247	85	90				1709		Elips e	B.redo ndos	5,7	3	1,9	Magmá tico microcr istalino
	250	80							Elips e	B.redo ndos	5,4	4,7	1,1	Magmá tico microcr istalino
	238	81	50						Elips e	B.redo ndos	3,7	2	1,9	Magmá tico microcr istalino
	237	82							Elips e	B.redo ndos	4,2	2,6	1,6	Magmá tico microcr istalino
	226	83	87					1	Elips e	B.redo ndos	3,5	2,4	1,5	Magmá tico microcr istalino
19SGI07	238	84	36	6259	3876		R		Elips e	B.redo ndos	5,3	4,4	1,2	Magmá tico microcr istalino
1950107	236	50	21	290	15				Elips e	B.redo ndos	6,5	4,1	1,6	Magmá tico microcr istalino
	252	70))				Oval ada	B.redo ndos	4,7	3,3	1,4	Magmá tico microcr istalino
	244	65	77						Elips e	B.redo ndos	5,8	2,6	2,2	Magmá tico microcr istalino
	310	75	49						Oval ada	B.redo ndos	5,1	4,4	1,2	Magmá tico microcr istalino
	298	78	5						Oval ada	B.redo ndos	6,5	4,1	1,6	Magmá tico microcr istalino
	300	75	179				1713		Elips e	B.redo ndos	5,3	3,5	1,5	Magmá tico microcr istalino
Sector	Dipdir	Dip	Rake	Norte	Este	Mue stra	Foto	Mues tra testig o	Form a	Bordes	Tam.ej e mayor	Tam.ej e menor	Relac ión de aspec to	Tipo de enclave

	303	28	111			19S GI0			Elips e	B.redo ndos	5,7	4,6	1,2	Magmá tico cristali no
19SGI08	310	35	94	6259	3881	801 E 19S GI0			Elips e	B.redo ndos	9,4	5,3	1,8	Magmá tico cristali no
1950108	298	46	115	345	11	802 E 19S GI0			Elips e	B.redo ndos	7,5	6,8	1,2	Magmá tico cristali no
	300	30	41			803 E			Elips e	B.redo ndos	3,5	2	1,8	Magmá tico cristali no
Sector	Dipdir	Dip	Rake	Norte	Este	Mue stra	Foto	Mues tra testig o	Form a	Bordes	Tam.ej e mayor	Tam.ej e menor	Relac ión de aspec to	Tipo de enclave
	4	55							Oval ada	B.redo ndos	11,8	8,8	1,3	Magmá tico cristali no
	1	70	59					- 5	Oval ada	B.redo ndos	6,4	4,7	1,4	Magmá tico cristali no
	14	89					P		Oval ada	B.redo ndos	9,7	7,4	1,3	Magmá tico cristali no
	16	52	115		C		1737	19 S G	Oval ada	B.redo ndos	10,7	5,3	2,0	Magmá tico cristali no
19SGI09	15	50	19	6260	3878	19S GI0		I0901 TE 19SG I0902	Oval ada	B.redo ndos	8,1	6,2	1,3	Magmá tico cristali no
	355	58		161	85	901 E		TE 19SG I0903 TE	Oval ada	B.redo ndos	5,6	4,1	1,4	Magmá tico cristali no
	335	35							Oval ada	B.redo ndos	7,7	3,2	2,4	Magmá tico cristali no
	340	40	73						Oval ada	B.redo ndos	6,4	5,3	1,2	Magmá tico cristali no
	337	43	28						Oval ada	B.redo ndos	8,1	4,1	2,0	Magmá tico cristali no
	327	25	171				1742		Oval ada	B.redo ndos	4,2	2,5	1,7	Magmá tico cristali no

	354	16	11						Oval ada	B.redo ndos	5,5	2,5	2,2	Magmá tico cristali no
	348	18							Oval ada	B.redo ndos	7	5,3	1,3	Magmá tico cristali no
	347	19							Oval ada	B.redo ndos	10,5	7,7	1,4	Magmá tico cristali no
	331	20							Oval ada	B.redo ndos	6,2	4,6	1,3	Magmá tico cristali no
	2	50	44				1818		Oval ada	B.redo ndos	8,7	5,3	1,6	Magmá tico cristali no
	320	83	170				1819		Oval ada	B.redo ndos	6,6	5,8	1,1	Magmá tico cristali no
	357	80	63				1820	2	Oval ada	B.redo ndos	4,2	2,4	1,8	Magmá tico cristali no
	70	58					0	Ç	Oval ada	B.redo ndos	7,1	6,3	1,1	Magmá tico cristali no
Sector	Dipdir	Dip	Rake	Norte	Este	Mue stra	Foto	Mues tra testig o	Form a	Bordes	Tam.ej e mayor	Tam.ej e menor	Relac ión de aspec to	Tipo de enclave
	65	13)			19SG 11001 TE 19SG	Oval ada	B.redo ndos	4,8	2,3	2,1	Magmá tico microcr istalino
	80	18						11002 TE 19SG 11003	Oval ada	B.redo ndos	6,3	4,2	1,5	Magmá tico microcr istalino
19SGI10	65	20	61	6259	3883	19S GI1 001 E	1756	TE 19SG I1004 TE	Oval ada	B.redo ndos	6	3	2,0	Magmá tico microcr istalino
	70	23		856	37	19S GI1 002 E		19SG 11005 TE 19SG	Oval ada	B.redo ndos	7,4	4,5	1,6	Magmá tico microcr istalino
	50	22	36				1757	I1006 TE 19SG I1007	Oval ada	B.redo ndos	5,3	3,8	1,4	Magmá tico microcr istalino
	40	48	119				1762	TE 19SG 11008 TE	Elips e	B.redo ndos	8,4	5	1,7	Magmá tico microcr istalino

	190	70						19SG I1009 TE	Elips e	B.redo ndos	15,9	10	1,6	Magmá tico cristali no
	155	35	75				1764		Elips e	B.redo ndos	10,2	7,3	1,4	Magmá tico cristali no
	190	26							Elips e	B.redo ndos	11,4	8,5	1,3	Magmá tico cristali no
	80	70							Elips e	B.redo ndos	8,3	6,2	1,3	Magmá tico cristali no
	84	75							Elips e	B.redo ndos	8,3	5,4	1,5	Magmá tico cristali no
	73	15	93				1821		Elips e	B.redo ndos	6,8	3,1	2,2	Magmá tico cristali no
Sector	Dipdir	Dip				Mue stra	Foto	Mues tra testig o	Form a	Bordes	Tam.ej e mayor	Tam.ej e menor	Relac ión de aspec to	Tipo de enclave
	5	70					1763	19SG 11101 TE	Diqu e	B.recto s	-	-		
	345	60		6259	3881	19S GI1	1767	19SG 11102 TE	Diqu e	B.recto s	-	-		
19SGI11	160	35		764	45	101 D	1822	19SG I1103 TE 19SG I1104 TE	Diqu e	B.recto s	-	-		
Sector	Dipdir	Dip	Rake			Mue stra	Foto	Mues tra testig o	Form a	Bordes	Tam.ej e mayor	Tam.ej e menor	Relac ión de aspec to	Tipo de enclave
19SGI12	-	-	-	Roca d	le caja	19S GI1 201 R				-	-	-		
Sector	Dipdir	Dip	Rake	Norte	Este	Mue stra	Foto	Mues tra testig o	Form a	Bordes	Tam.ej e mayor	Tam.ej e menor	Relac ión de aspec to	Tipo de enclave
19SGI13	253	26		6253 772	3890 77				Elips e	B.recto	7	7	1,0	Magmá tico cristali no
	260	30	53						Elips e	B.recto s	6,3	3,8	1,7	Magmá tico

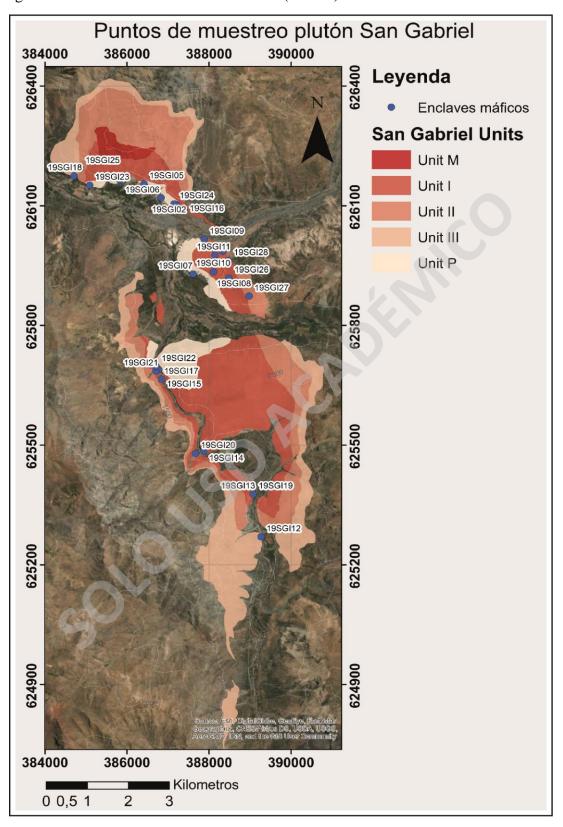
		Ì												cristali no
	272	28							Elips e	B.recto	4	2,5	1,6	Magmá tico cristali no
	270	26	80						Elips e	B.recto	5,1	2,1	2,4	Magmá tico cristali no
	273	25	77						Elips e	B.recto s	7,7	5,5	1,4	Magmá tico cristali no
	275	28							Elips e	B.recto s	5,2	3,2	1,6	Magmá tico cristali no
Sector	Dipdir	Dip	Rake	Norte	Este	Mue stra	Foto	Mues tra testig o	Form a	Bordes	Tam.ej e mayor	Tam.ej e menor	Relac ión de aspec to	Tipo de enclave
	45	20							Elips e	B.redo ndos	6,7	4,3	1,6	Magmá tico cristali no
	35	35	155				1796		Elips e	B.redo ndos	6	3,4	1,8	Magmá tico cristali no
	45	35	15				1797		Elips e	B.redo ndos	5	4,2	1,2	Magmá tico cristali no
19SGI14	235	22	136	6254 852	3878 71		1790		Elips e	B.redo ndos	4,8	2,7	1,8	Magmá tico cristali no
	262	36	116				1791		Elips e	B.redo ndos	2,5	1,8	1,4	Magmá tico cristali no
	315	40	80				1792		Elips e	B.redo ndos	2,1	1,7	1,2	Magmá tico cristali no
	285	35	70				1795		Circu lar	B.redo ndos	3,5	3,4	1,0	Magmá tico cristali no
Sector	Dipdir	Dip	Rake	Norte	Este	Mue stra	Foto	Mues tra testig o	Form a	Bordes	Tam.ej e mayor	Tam.ej e menor	Relac ión de aspec to	Tipo de enclave
19SGI15	50	80	51	6256 653	3868 40		1786		Elips e	B.redo ndos	3,2	2,7	1,2	Magmá tico microcr istalino
	134	84	33						Elips e	B.redo ndos	4,3	1,1	4,0	Magmá tico

														microcr istalino
	135	79	84						Elips e	B.redo ndos	4,4	3,8	1,3	Magmá tico microcr istalino
	151	79	136						Elips e	B.redo ndos	5,1	3,8	1,7	Magmá tico microcr istalino
	145	80	86						Elips e	B.redo ndos	3,7	2,6	1,4	Magmá tico microcr istalino
Sector	Dipdir	Dip	Rake	Norte	Este	Mue stra	Foto	Mues tra testig o	Form a	Bordes	tam.eje mayor	tam.eje menor	Relac ión de aspec to	Tipo de enclave
	330	55	109				1617		Oval ada	B.redo ndos	2,5	1,5	1,7	Magmá tico microcr istalino
	345	70							Elips e	B.redo ndos	4,4	3,6	1,2	Magmá tico microcr istalino
	320	75	108				1618		Oval ada	B.redo ndos	3,7	2,7	1,4	Magmá tico microcr istalino
	335	65					Y	19SG 11601	Oval ada	B.redo ndos	5,5	3,1	1,8	Magmá tico microcr istalino
	340	80	115				1619	TE 19SG I1602 TE	Oval ada	B.redo ndos	4,1	2,4	1,7	Magmá tico microcr istalino
19SGI16	125	90	52	6260 919	3873 95		1904	19SG 11603 TE 19SG	Oval ada	B.redo ndos	4,3	2,4	1,8	Magmá tico microcr istalino
	190	80	42				1905	TE 19SG 11605	Oval ada	B.redo ndos	6	3,6	1,7	Magmá tico microcr istalino
	245	75	35				1906	TE	Oval ada	B.redo ndos	5,7	2,4	2,4	Magmá tico cristali no
	205	80	79				1908		Circu lar	B.redo ndos	2,7	2,1	1,3	Magmá tico cristali no
	190	70	48				1910		Elips e	B.redo ndos	5,7	3,7	1,5	Magmá tico microcr istalino
	242	28	109				1909		Oval ada	B.subr	9,6	6,1	1,6	Magmá tico

										angulos os				microcr istalino
	205	83	155				1911		Elips e	B.redo ndos	2,3	1,4	1,6	Magmá tico cristali no
	91	70	137				1912		Oval ada	B.redo ndos	3,5	2,7	1,3	Magmá tico cristali no
	110	70							Elips e	B.redo ndos	4,8	3,5	1,4	Magmá tico cristali no
	185	90							Elips e	B.redo ndos	5,7	4,5	1,3	Magmá tico cristali no
	190	25							Elips e	B.redo ndos	7	5,3	1,3	Magmá tico cristali no
	100	90	138				1916		Elips e	B.redo ndos	3,6	1,3	2,8	Magmá tico microcr istalino
Sector	Dipdir	Dip	Rake	Norte	Este	Mue stra	Foto	Mues tra testig o	Form a	Bordes	Tam.ej e mayor	Tam.ej e menor	Relac ión de aspec to	Tipo de enclave
	250	75	105						Elips e	B.redo ndos	5,4	3,2	1,7	Residu al
	260	80	35						Elips e	B.redo ndos	4,5	3,8	1,2	Residu al
19SGI17	240	72	168	6256 893	3867 74		1620		Elips e	B.redo ndos	5,3	4,1	1,3	Residu al
	278	70	28	673					Elips	B.redo ndos	6,8	3,9	1,7	Residu al
	255	65	148						Elips	B.redo ndos	5,1	2,6	2,0	Residu
Sector	Dipdir	Dip	Rake	Norte	Este	Mue stra	Foto	Mues tra testig o	Form a	Bordes	Tam.ej e mayor	Tam.ej e menor	Relac ión de aspec to	Tipo de enclave
	322	30	56				1623	19SG 11801 TE 19SG	Oval ada	B.redo ndos	7,3	3,1	2,4	Magmá tico cristali no
19SGI18	314	32	147	6261 751	3847 12		1624	I1802 TE 19SG I1803	Oval ada	B.redo ndos	6	5,7	1,1	Magmá tico cristali no
								TE 19SG I1804 TE	Circu lar	B.redo ndos	4,8	4,3	1,1	Magmá tico cristali no
	183	45	128				1626	19SG I1805	Oval ada	B.redo ndos	5,4	3	1,8	Magmá tico

					Ī			TE 19SG						cristali no
	200	50						I1806 TE	Oval ada	B.redo ndos	6,3	4,8	1,3	Magmá tico cristali no
	195	32	28				1881		Elips e	B.redo ndos	2,1	1,8	1,2	Magmá tico cristali no
	160	35	71				1882		Elips e	B.redo ndos	4,7	2,4	1,958 3333 33	Magmá tico cristali no
	220	12	16				1883		Oval ada	B.redo ndos	7	3,4	2,1	Magmá tico microcr istalino
	175	20	55				1884		Elips e	B.redo ndos	8,2	3,4	2,4	Magmá tico cristali no
	170	83	105				1885		Oval ada	B.redo ndos	8,8	4	2,2	Magmá tico cristali no
	177	77	83				1887		Oval ada	B.redo ndos	6,3	5	1,3	Magmá tico cristali no
									Elips e	B.redo ndos	9,7	7	1,4	Magmá tico cristali no
	85	50			C				Elips e	B.redo ndos	4,1	2,4	1,7	Magmá tico cristali no
	95	45							Elips e	B.redo ndos	5	3,5	1,4	Magmá tico cristali no
	133	40	146				1891		Oval ada	B.redo ndos	5,6	1,2	4,7	Magmá tico microcr istalino
	110	22	125				1892		Oval ada	B.redo ndos	3,6	1,1	3,3	Magmá tico microcr istalino
Sector	Dipdir	Dip	Rake	Norte	Este	Mue stra	Foto	Mues tra testig o	Form a	Bordes	Tam.ej e mayor	Tam.ej e menor	Relac ión de aspec to	Tipo de enclave
19SGI19	300	64	65	6253 772	3890 77		1800	19SG 11901 TE 19SG	Circu lar	B.redo ndos	7,3	7,1	1,0	Magmá tico cristali no
	325	60	20				1801	I1902 TE	Oval ada	B.redo ndos	6,6	3,5	1,9	Magmá tico

								19SG 11903						cristali no
	290	60	86				1802	TE 19SG I1904 TE	Oval ada	B.redo ndos	4,1	2,4	1,7	Magmá tico cristali no
	276	75						19SG 11905 TE	Elips e	B.redo ndos	5	2,7	1,9	Magmá tico cristali no
	303	65							Elips e	B.redo ndos	7,5	5,4	1,4	Magmá tico cristali no
Sector	Dipdir	Dip	Rake	Norte	Este	Mue stra	Foto	Mues tra testig o	Form a	Bordes	Tam.ej e mayor	Tam.ej e menor	Relac ión de aspec to	Tipo de enclave
	316	25	22				1803	19SG I2001 TE 19SG	Oval ada	B.redo ndos	10,1	7,8	1,3	Magmá tico cristali no
	313	30	175				1804	I2002 TE 19SG I2003	Oval ada	B.redo ndos	6	4,2	1,4	Magmá tico cristali no
19SGI20	285	65	64	6254	3876		1805	TE 19SG 12004 TE	Oval ada	B.redo ndos	8,6	5,2	1,7	Magmá tico cristali no
1950120	290	89	89	790	71		1806	19SG I2005 TE 19SG	Oval ada	B.redo ndos	5	3,3	1,5	Magmá tico cristali no
	293	80	169		5		1807	I2006 TE 19SG I2007	Oval ada	B.redo ndos	9,5	4,1	2,3	Magmá tico cristali no
	248	68	22				1808	TE 19SG 12008 TE	Oval ada	B.redo ndos	7,8	5,4	1,4	Magmá tico cristali no
Sector	Dipdir	Dip	Rake	Norte	Este	Mue stra	Foto	Mues tra testig o	Form a	Bordes	Tam.ej e mayor	Tam.ej e menor	Relac ión de aspec to	Tipo de enclave
	30	25	57				1809		Elips e	B.redo ndos	8,4	5,6	1,5	Magmá tico cristali no
19SGI21	45	27	141	6256 795	3867 47		1812		Elips e	B.redo ndos	6,2	3,1	2,0	Magmá tico cristali no
	60	73	129				1811		Elips e	B.redo ndos	7,6	4,7	1,6	Magmá tico cristali no
	330	75	74				1810		Elips e	B.redo ndos	5,3	4,7	1,1	Magmá tico


														cristali no
Sector	Dipdir	Dip	Rake	Norte	Este	Mue stra	Foto	Mues tra testig o	Form a	Bordes	Tam.ej e mayor	Tam.ej e menor	Relac ión de aspec to	Tipo de enclave
	57	70						19SG I2201 TE 19SG	Elips e	B.subr - angulos os	6,5	5,7	1,1	Xenolit o
	60	69	42				1813	I2201 TE 19SG I2203	Elips e	B.subr - angulos os	4,8	2	2,4	Xenolit o
	85	70	48				1814	TE 19SG I2204 TE	Elips e	B.subr - angulos os	7,2	3,1	2,3	Xenolit 0
19SGI22	10	65		6256 899	3865 98			19SG I2205 TE 19SG	Elips e	B.subr - angulos os	5,6	3,4	1,6	Xenolit 0
	7	60	21					I2206 TE 19SG I2207	Elips e	B.subr - angulos os	7,2	4,9	1,5	Xenolit o
	13	68	39					TE 19SG 12208 TE 19SG 12209 TE	Elips e	B.subr - angulos os	6,6	4,3	1,5	Xenolit o
Sector	Dipdir	Dip	Rake	Norte	Este	Mue stra	Foto	Mues tra testig o	Form a	Bordes	Tam.ej e mayor	Tam.ej e menor	Relac ión de aspec to	Tipo de enclave
	7	80	88				1815		Elips e	B.redo ndos	4,1	3	1,4	Magmá tico cristali no
	5	80						19SG I2301 TE 19SG	Elips e	B.redo ndos	3,8	1,4	2,7	Magmá tico cristali no
19SGI23	5	80	48	6261 515	3850 90		1816	I2301 TE 19SG I2303	Elips e	B.redo ndos	3,6	2,6	1,4	Magmá tico cristali no
								TE 19SG I2304 TE	Elips e	B.redo ndos	4,7	2,2	2,1	Magmá tico cristali no
	160	87	52				1817		Elips e	B.redo ndos	5,6	3,7	1,5	Magmá tico cristali no
Sector	Dipdir	Dip	Rake	Norte	Este	Mue stra	Foto	Mues tra	Form a	Bordes	#¡VAL OR!	Tam.ej e menor	Relac ión de	Tipo de enclave

								testig O					aspec to	
	210	80	87						Elips e	B.redo ndos	5,2	3,4	1,5	Magmá tico cristali no
	220	55						19SG I2401	Elips e	B.redo ndos	8,7	6,4	1,4	Magmá tico cristali no
19SGI24	210	60	103	6261	3871		1823	TE 19SG I2401 TE	Elips e	B.redo ndos	7,2	4,3	1,7	Magmá tico cristali no
1730124	90	80	3	048	49		1824	19SG I2403 TE 19SG	Elips e	B.redo ndos	4	3,2	1,3	Magmá tico cristali no
	95	80						I2404 TE	Elips e	B.redo ndos	3,4	1,4	2,4	Magmá tico cristali no
	97	85	19						Elips e	B.redo ndos	6,3	2,3	2,7	Magmá tico cristali no
Sector	Dipdir	Dip	Rake	Norte	Este	Mue stra	Foto	Mues tra testig o	Form a	Bordes	Tam.ej e mayor	Tam.ej e menor	Relac ión de aspec to	Tipo de enclave
	255	55	57				1893		Elips e	B.redo ndos	3,1	2,6	1,2	Magmá tico cristali no
	283	20	152				1894	19SG	Elips e	B.redo ndos	5	2,1	2,4	Magmá tico microcr istalino
	185	89	156				1896	12501 TE 19SG 12502	Elips e	B.redo ndos	4,5	3,1	1,5	Magmá tico cristali no
19SGI25	210	58		6261 933	3848 54			TE 19SG I2503 TE	Elips e	B.redo ndos	3,4	2,3	1,5	Magmá tico cristali no
	205	50	104				1900	19SG I2504 TE 19SG	Oval ada	B.redo ndos	2,6	1,5	1,7	Magmá tico microcr istalino
	340	82	30				1901	I2505 TE	Elips e	B.redo ndos	2,4	1,7	1,4	Magmá tico cristali no
	242	35	29				1902		Elips e	B.redo ndos	2,3	2,3	1,0	Magmá tico cristali no
	238	35	4				1903		Elips e	B.redo ndos	3,2	1,8	1,8	Magmá tico

						-								cristali no
	182	20							Oval ada	B.redo ndos	5,7	4,1	1,4	Magmá tico cristali no
	211	36							Oval ada	B.redo ndos	7,3	5,7	1,3	Magmá tico cristali no
	240	47							Oval ada	B.redo ndos	3,2	2,7	1,2	Magmá tico cristali no
	221	38							Oval ada	B.redo ndos	2,2	1,4	1,6	Magmá tico cristali no
Sector	Dipdir	Dip	Rake	Norte	Este	Mue stra	Foto	Mues tra testig o	Form a	Bordes	Tam.ej e mayor	Tam.ej e menor	Relac ión de aspec to	Tipo de enclave
19SGI26	-	-	-	6259 189	3884 86	-	-	-		-	-	-	-	-
Sector	Dipdir	Dip	Rake	Norte	Este	Mue stra	Foto	Mues tra testig o	Form a	Bordes	Tam.ej e mayor	Tam.ej e menor	Relac ión de aspec to	Tipo de enclave
19SGI27	-	-	ı	6258 736	3889 76	ı		-	1	-	-	-	ı	-
Sector	Dipdir	Dip	Rake	Norte	Este	Mue stra	Foto	Mues tra testig o	Form a	Bordes	Tam.ej e mayor	Tam.ej e menor	Relac ión de aspec to	Tipo de enclave
	30	23	43)		1918		Oval ada	B.redo ndos	2,5	1,6	1,6	Magmá tico microcr istalino
	50	28	90				1917		Oval ada	B.redo ndos	5,2	3,4	1,5	Magmá tico microcr istalino
19SGI28	55	50	84	6259	3884		1919	_	Circu lar	B.redo ndos	3,4	3	1,1	Magmá tico microcr istalino
1930128	47	20	89	625	72		1920		Elips e	B.redo ndos	6,2	3,2	1,9	Magmá tico microcr istalino
1750128	47 75	20	89 101		72		1920 1921				2,7	1,8	1,9	tico microcr

35	38	135		1923	Elips e	B.redo ndos	5,3	1,4	3,8	Magmá tico cristali
33	31	151		1924	e Circu lar	B.redo ndos	3,0	3,3	0,9	no Magmá tico microcr istalino
50	20	19		1925	Elips e	B.redo ndos	7,2	3	2,4	Magmá tico microcr istalino
80	55	99		1926	Elips e	B.redo ndos	9,3	6,1	1,5	Magmá tico microcr istalino

Imagen satelital con los sectores de muestreo (ArcGis).

Muestras correspondientes a testigos y sus mediciones

Sector	Datos testigo			
Sector	Código	Inclinación	Orientación	Roca
	19SGI0201TE	95	N66E	Enclave
19SGI02	19SGI0202TE	48	N58E	Enclave
19 50 102	19SGI0203ATE	60	N63E	Enclave
	19SGI0203BTE	51	N67E	Enclave
Sector	Código	Inclinación	Orientación	Roca
	19SGI0901TE	80	S07E	Enclave
19SGI09	19SGI0902TE	78	S15E	Enclave
	19SGI0903TE	28	N64W	Enclave
Sector	Código	Inclinación	Orientación	Roca
	19SGI1001TE	28	N87W	Enclave
	19SGI1002TE	30	N58W	Enclave
	19SGI1003TE	19	N85W	Enclave
	19SGI1004TE	11	S58E	Enclave
19SGI10	19SGI1005TE	22	S50W	Enclave
	19SGI1006TE	42	N06W	Enclave
	19SGI1007TE	41	N29W	Enclave
	19SGI1008TE	14	N18W	Enclave
	19SGI1009TE	34	S34W	Enclave
Sector	Código	Inclinación	Orientación	Roca
	19SGI1101TE	14	S89W	Dique
19SGI11	19SGI1102TE	20	N86W	Dique
1980111	19SGI1103TE	14	S52W	Dique
	19SGI1104TE	19	S26W	Dique
Sector	Código	Inclinación	Orientación	Roca
	19SGI1601TE	80	N14E	Enclave
	19SGI1602TE	78	N45E	Enclave
19SGI16	19SGI1603TE	89	N25E	Enclave
	19SGI1604TE	90	N12E	Enclave
	19SGI1605TE	92	N83E	Enclave

Sector	Código	Inclinación	Orientación	Roca
	19SGI1801TE	58	N05W	Xenolito / Granito
	19SGI1802TE	62	NS	Xenolito
19SGI18	19SGI1803TE	15	N20E	Enclave
1930116	19SGI1804TE	19	S86E	Enclave
	19SGI1805TE	24	N18E	Enclave
	19SGI1806TE	31	N20E	Enclave
Sector	Código	Inclinación	Orientación	Roca
	19SGI1901TE	63	N100W	Enclave
	19SGI1902TE	57	N98W	Enclave
19SGI19	19SGI1903TE	62	N100W	Enclave
	19SGI1904TE	58	N92W	Enclave
	19SGI1905TE	50	N66W	Enclave
Sector	Código	Inclinación	Orientación	Roca
	19SGI2001TE	21	S12W	Enclave
	19SGI2002TE	45	S23W	Enclave
	19SGI2003TE	59	N86W	Enclave
19SGI20	19SGI2004TE	63	N81W	Enclave
1950120	19SGI2005TE	42	N66W	Enclave
	19SGI2006TE	53	S74W	Enclave
	19SGI2007TE	19	N70W	Enclave
	19SGI2008TE	33	S61W	Enclave
Sector	Código	Inclinación	Orientación	Roca
	19SGI2201TE			
9	19SGI2202TE			
	19SGI2203TE			
	19SGI2204TE			
19SGI22	19SGI2205TE			Enclave
	19SGI2206TE	34	N57W	Roca caja
	19SGI2207TE	36	N64W	Roca caja
	19SGI2208TE	45	S83E	Xenolito
	19SGI2209TE	39	N76E	Xenolito

Sector	Código	Inclinación Orientación		Roca
	19SGI2301TE	62	N05E	Enclave
19SGI23	19SGI2302TE	61	N19E	Enclave
1986123	19SGI2303TE	68	N05E	Enclave
	19SGI2304TE	76	N07E	Enclave
Sector	Código	Inclinación	Orientación	Roca
	19SGI2401TE	34	N30E	Enclave
19SGI24	19SGI2402TE	60	N21E	Enclave
175012+	19SGI2403TE	76	N22WE	Enclave
	19SGI2404TE	80	N17W	Enclave
Sector	Código	Inclinación	Orientación	Roca
	19SGI2501TE	39	N77E	Enclave
19SGI25	19SGI2502TE	45	N40E	Enclave
	19SGI2503TE	32	N74E	Enclave

Muestras utilizadas para corte transparente pulido

Tipo		
W		
Muestras de mano		
Testigos		
Testigos		

19SGI1002TE	
19SGI1601TE	
19SGI1604TE	
19SGI1605TE	
19SGI1904TE	
19SGI2001DTE	
19SGI2003B	
19SGI2004TE	
19SGI2005ATE	
19SGI2006TE	
19SGI2301TE	
19SGI2302TE	
19SGI2304TE	
19SGI2403TE	
19SGI2501BTE	
19SGI2502TE	
	1

Tabla de clasificación de enclaves respecto a la declinación, inclinación para determinar los stereonet en los sectores del estudio.

K max		ax	K int		K min		Error 95%		
Sector	Max Dec	Max Inc	Int Dec	Int Inc	Min Dec	Min Inc	Max 95%	Int 95%	Min 95 %
19SGI01	94,21	27,06	279,66	62,84	185,34	2,21	4,2862	0,6221	0,2176
19SGI02	332,48	37,74	107,16	42,26	221,73	24,59	1,6878	0,3679	0,15
19SGI03	139,75	33,69	9,86	43,89	249,96	27,39	5,2892	0,677	0,1447
19SGI04	94,14	52,34	359,53	3,55	266,81	37,43	2,6914	0,5615	0,2013
19SGI05	280,3	64,86	106,85	24,99	15,68	2,52	0,2647	0,0814	0,1769
19SGI06	151,01	52,74	360	33,64	260,35	14,14	0,9049	0,2828	0,0432
19SGI07	97,8	72,84	357	3,31	266	16,82	3,0133	0,4129	0,2525
19SGI08	124,04	36,87	33,12	1,23	301,47	53,1	2,4861	0,7207	0,1246
19SGI09	207,23	61,75	66,47	22,59	329,6	16,05	1,7591	0,3411	0,2195
19SGI10	10,76	4,04	102,86	27,44	273,07	62,21	2,5293	0,4918	0,1487
19SGI13	37,21	22,97	127,92	1,68	221,88	66,96	0,2219	0,1238	0,0078
19SGI14	68,62	27,08	161,71	6,01	263,2	62,15	2,9574	0,5597	0,1341
19SGI15	91,9	73,56	277,54	16,36	187,09	1,53	2,9282	0,2749	0,1821
19SGI16	166,92	43,31	343,24	46,63	75,19	1,84	1,5814	0,2543	0,4039
19SGI17	97,31	70,67	351,63	5,41	259,82	18,5	2,8079	0,5105	0,1391

19SGI18	155,46	21,34	64,53	2,39	328,44	68,51	2,9404	0,4142	0,3714
19SGI19	51,94	12,89	162,31	56,66	314,3	30,15	0,6403	0,2829	0,0288
19SGI20	187,18	9,13	84,41	53,99	283,53	34,48	2,0379	0,371	0,3185
19SGI21	139,64	34,23	27,55	28,93	267,58	42,1	1,4733	0,2467	0,2128
19SGI22	312,92	29,2	64,3	33,11	191,62	42,92	2,1412	0,3094	0,1814
19SGI23	78,92	59,63	260,81	30,36	170,33	0,83	0,0764	0,0112	0,0129
19SGI24	14,16	77,2	229,38	10,52	138,04	7,22	1,4706	0,2709	0,357
19SGI25	350,47	25,72	99,04	33,47	231,2	45,44	1,451	0,2193	0,1742
19SGI28	0,21	20,88	103,17	30,46	241,32	51,7	4,197	0,4951	0,1046

Parámetros escalares elipsoides en el sector de estudio.

ID	Y	X	Anisotropía	Lineacion	Foliación
19SGI01	6261028	387211	2,8916	2,0067	1,4410
19SGI02	6261201	386831	5,9782	4,0314	1,4829
19SGI03	6261400	386537	6,4707	4,1508	1,5589
19SGI04	6261506	386432	5,2088	1,0782	4,8311
19SGI05	6261550	386415	1,1731	1,1166	1,0506
19SGI06	6261643	385827	5,3408	3,0979	1,7240
19SGI07	6259290	387615	3,4842	1,4687	2,3723
19SGI08	6259345	388111	21,1657	7,2973	2,9005
19SGI09	6260161	387885	3,0042	1,6396	1,8323
19SGI10	6259856	388337	6,7749	3,6740	1,8440
19SGI13	6253772	389077	6,8414	4,4252	1,546
19SGI14	6254852	387871	9,9870	3,1368	3,1838
19SGI15	6256653	386840	3,8532	1,1509	3,3479
19SGI16	6260919	387395	1,3330	1,1682	1,1410
19SGI17	6256893	386774	7,4073	4,2721	1,7339
19SGI18	6261751	384712	2,2216	1,1978	1,8547
19SGI19	6261751	384712	8,8280	4,9252	1,7924
19SGI20	6254790	387671	2,5566	1,8061	1,4155
19SGI21	6256856	386703	2,6820	1,5328	1,7497
19SGI22	6256970	386711	3,6035	2,0921	1,7224
19SGI23	6261515	385090	5,9816	2,9720	2,0127
19SGI24	6261048	387149	1,8044	1,1393	1,5838
19SGI25	6261933	384854	3,8060	2,0626	1,8453
19SGI28	6259625	388472	9,4515	4,1655	2,2690