Vista simple de metadatos

dc.contributor.authorLazcano, Vadel [Escuela de Ingenieria Electronica, Facultad de Ciencias, Universidad Mayor, Chile]es_CL
dc.date.accessioned2020-08-12T14:11:55Z
dc.date.accessioned2020-08-12T19:30:39Z
dc.date.available2020-08-12T14:11:55Z
dc.date.available2020-08-12T19:30:39Z
dc.date.issued2016es_CL
dc.identifier.citationLazcano, V. (2016, October). Real time optical flow estimation for images with large displacements. In 2016 IEEE International Conference on Automatica (ICA-ACCA) (pp. 1-6). IEEE.es_CL
dc.identifier.urihttps://ieeexplore.ieee.org/document/7778432es_CL
dc.identifier.urihttps://doi.org/10.1109/ICA-ACCA.2016.7778432es_CL
dc.identifier.urihttp://repositorio.umayor.cl/xmlui/handle/sibum/6968
dc.descriptionPublished in: 2016 IEEE International Conference on Automatica (ICA-ACCA), 19-21 Oct. 2016
dc.description.abstractOptical flow is defined as the pattern of apparent motion of objects in a image sequence. Optical flow has many applications: control of automatic taking off and landing of an autonomous aircraft, video compression, noise suppression, motion compensation and many more. There are different methods to estimate the optical flow. Variational models are the most frequently used methods to estimate the optical flow. These methods states an energy model to estimate the optical flow and frequently linealizations are used. Theses linearizations causes that the optical flow estimation fails if the motion presents displacements larger than the size of the objects. Optical flow methods generally implies large execution time to be estimated. In this work is presented a method that incorporate, to the classical optical flow's Horn-Schunk method, exhaustive matchings. These exhaustive matchings improve the estimation to handle large displacements. The method was implemented in a Intel i7, 3.5 GHz, GPU GeForce NVidia GTX 980 Ti and also a standard web-cam. Using images of 320 240 pixels the implementation reaches 6 images per second, which means that it is able to run in real time.es_CL
dc.format.extentPaper presentado a conferencia
dc.language.isoenes_CL
dc.publisher2016 IEEE International Conference on Automatica (ICA-ACCA)es_CL
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile
dc.titleReal time optical flow estimation for images with large displacementses_CL
dc.title.alternativeCálculo de Flujo Óptico en Tiempo Real para Imágenes con Grandes Desplazamientosen_CL
dc.typeArtículo o paperes_CL
umayor.facultadFacultad de Ciencias
umayor.indizadorCOT
umayor.politicas.sherpa/romeoSuscripciónes_CL
umayor.indexadoSCOPUSes_CL
dc.identifier.doiDOI: 10.1186/s13071-015-0919-xes_CL]


Vista simple de metadatos



Modificado por: Sistema de Bibliotecas Universidad Mayor - SIBUM
DSpace software copyright © 2002-2018  DuraSpace