Vista simple de metadatos

dc.contributor.authorCubillos C.es_CL
dc.contributor.authorMacias, Mauricio [Escuela de Ingeniería Civil en Computación e Informática, Universidad Mayor, Chile]es_CL
dc.contributor.authorBarria, Cristián [Universidad Mayor, Chile]es_CL
dc.contributor.authorAcuña, Alejandra [Vicerrectoría de Pregrado, Universidad Mayor, Chile]es_CL
dc.date.accessioned2020-08-12T14:11:55Z
dc.date.accessioned2020-08-12T19:30:39Z
dc.date.available2020-08-12T14:11:55Z
dc.date.available2020-08-12T19:30:39Z
dc.date.issued2016es_CL
dc.identifier.citationM. Macías, C. Barría, A. Acuna and C. Cubillos, "SGSI support throught malware's classification using a pattern analysis," 2016 IEEE International Conference on Automatica (ICA-ACCA), Curico, 2016, pp. 1-4, doi: 10.1109/ICA-ACCA.2016.7778516.es_CL
dc.identifier.urihttps://ieeexplore.ieee.org/abstract/document/7778516es_CL
dc.identifier.urihttps://doi.org/10.1109/ICA-ACCA.2016.7778516es_CL
dc.identifier.urihttp://repositorio.umayor.cl/xmlui/handle/sibum/6972
dc.descriptionPublished in: 2016 IEEE International Conference on Automatica (ICA-ACCA), 19-21 Oct. 2016
dc.description.abstractNowadays, there are significant amounts of malware codes that are created every day. However, the majority of these samples (malware) are variations of other malware that have been already identified. Therefore, most of the analyzed malware have similar structure among them. In this investigation, we will present a technic to extract features throughout different abstraction levels in order to classify malware codes. This analysis is based on three factors: the position where the malware is detected, the functions' calls from each Dynamic Link Libraries (DLL) and the ten most frequently visited hexadecimals per each malware sample. Once those characteristics are obtained, a descriptive vector of each malware is built. This vector works as a training to different learning machines types (SVM, IBL, and Decision Tree) and as a classification of the variations of malware codes (Virus, Backdoor, Trojan, and Adware). The result in the precision of the classification was 78.38% average where 3 types of learning machines were combined. The classified type as virus and algorithm IB1 (Instance Based Learning, IBL) were considered more accurate. These results are a fundamental support to the management system in information security by combining traditional and new classification and detention techniques of malware codes.es_CL
dc.format.extentPaper presentado a conferencia
dc.language.isoenes_CL
dc.publisherIEEEes_CL
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile
dc.titleSGSI support throught malware's classification using a pattern analysises_CL
dc.title.alternativeApoyo al SGSI por medio de la Clasificación de Malware empleando análisis de patronesen_CL
dc.typeArtículo o paperes_CL
umayor.facultadFacultad de Ciencias
umayor.indizadorCOT
umayor.politicas.sherpa/romeoSuscripciónes_CL
umayor.indexadoSCOPUSes_CL
dc.identifier.doiDOI: 10.1109/ICA-ACCA.2016.7778516es_CL]
umayor.indicadores.scopus-(scimago-sjr)ÍNDICE H: 62es_CL


Vista simple de metadatos



Modificado por: Sistema de Bibliotecas Universidad Mayor - SIBUM
DSpace software copyright © 2002-2018  DuraSpace