Depth Completion Using Infinity Laplacian Based on Steering Positive Definite Metric Operator Plus Convolutional Stage
Fecha
2023-05-03Autor
Lazcano, Vanel [Núcleo de Matemática, Física y Estadística, Universidad Mayor, Chile]
Calderero, Felipe [Núcleo de Matemática, Física y Estadística, Universidad Mayor, Chile]
Ubicación geográfica
Notas
HERRAMIENTAS
Resumen
Depth completion is an important task for autonomous vehicles, video games, and many others applications. Frequently depth maps present holes or data with low confidence level. This paper is devoted to the guided depth completion problem using a scene color reference image to guide the completion of a sparse depth map. In this paper we propose a model to complete the depth map based on an interpolator model and convolution stages enforcing color features of the reference image. In one hand, the interpolator we used is the infinity Laplacian (which is the simplest interpolator that holds a set of axioms). In the other hand, The convolutional stage is constructed using either Gabor filters (GF) or steering filters (SF). We tested different configuration of our proposal to find the best performance: i) SF Stage-infinity Laplacian-GF Stage. ii) SF Stage-Steering kernel-GF Stage. iii) SF Stage-infinity Laplacian (based on Steering Positive Definite Operator)-GF Stage. These models were assessed in the publicly available KITTI Depth Completion Suite. Best performance was obtained by the model iii) outperforming our model previous version, and others contemporaneous models.
URI
https://repositorio.umayor.cl/xmlui/handle/sibum/9457https://doi.org/10.1007/978-981-99-2362-5_14
https://link.springer.com/chapter/10.1007/978-981-99-2362-5_14#author-information
Coleccion/es a la/s que pertenece:
Si usted es autor(a) de este documento y NO desea que su publicación tenga acceso público en este repositorio, por favor complete el formulario aquí.