Vista simple de metadatos

dc.contributorCentro Multidisciplinario de Física, Universidad Mayor, Chilees
dc.contributor.authorCastro, Pablo de
dc.contributor.authorUrbina, Felipe [Univ Mayor, Centro Multidisciplinario de Física, Santiago, Chile]
dc.contributor.authorNorambuena, Ariel [Univ Mayor, Centro Multidisciplinario de Física, Santiago, Chile]
dc.contributor.authorGuzmán-Lastra, Francisca
dc.date.accessioned2024-03-20T18:34:39Z
dc.date.available2024-03-20T18:34:39Z
dc.date.issued2023-10-02
dc.identifier.citationSalas, I., Guzmán-Lastra, F., Pastén, D., & Norambuena, A. (2024). Dynamical complex networks for understanding motility induced phase separation in Active Brownian Particles. arXiv preprint arXiv:2402.03228.es
dc.identifier.issn2470-0045
dc.identifier.issneISSN 2470-0053
dc.identifier.otherSCOPUS_ID:85174210826
dc.identifier.otherPMID: 37978653
dc.identifier.urihttps://repositorio.umayor.cl/xmlui/handle/sibum/9468
dc.identifier.urihttps://www.researchgate.net/publication/369740069_Sequential_epidemic_spread_between_agglomerates_of_self-propelled_agents_in_one_dimension
dc.identifier.urihttps://doi.org/10.1103/PhysRevE.108.044104
dc.identifier.urihttps://journals.aps.org/pre/abstract/10.1103/PhysRevE.108.044104
dc.identifier.urihttps://europepmc.org/article/MED/37978653
dc.description.abstractMotile organisms can form stable agglomerates such as cities or colonies. In the outbreak of a highly contagious disease, the control of large-scale epidemic spread depends on factors like the number and size of agglomerates, travel rate between them, and disease recovery rate. While the emergence of agglomerates permits early interventions, it also explains longer real epidemics. In this work, we study the spread of susceptible-infected-recovered (SIR) epidemics (or any sort of information exchange by contact) in one-dimensional spatially structured systems. By working in one dimension, we establish a necessary foundation for future investigation in higher dimensions and mimic micro-organisms in narrow channels. We employ a model of self-propelled particles which spontaneously form multiple clusters. For a lower rate of stochastic reorientation, particles have a higher tendency to agglomerate and therefore the clusters become larger and less numerous. We examine the time evolution averaged over many epidemics and how it is affected by the existence of clusters through the eventual recovery of infected particles before reaching new clusters. New terms appear in the SIR differential equations in the last epidemic stages. We show how the final number of ever-infected individuals depends nontrivially on single-individual parameters. In particular, the number of ever-infected individuals first increases with the reorientation rate since particles escape sooner from clusters and spread the disease. For higher reorientation rate, travel between clusters becomes too diffusive and the clusters too small, decreasing the number of ever-infected individuals.es
dc.format.extent12 p., PDFes
dc.language.isoen_USes
dc.publisherAmerican Physical Societyes
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chilees
dc.titleSequential epidemic-like spread between agglomerates of self-propelled agents in one dimensiones
dc.typeArtículo o Paperes
umayor.indizadorCOTes
umayor.indexadoScopuses
umayor.indexadoPUBMEDes
dc.identifier.doi10.1103/PHYSREVE.108.044104
umayor.indicadores.wos-(cuartil)Q1
umayor.indicadores.scopus-(scimago-sjr)SCIMAGO/ INDICE H: 317
umayor.indicadores.scopus-(scimago-sjr)SJR 0,82


Vista simple de metadatos



Modificado por: Sistema de Bibliotecas Universidad Mayor - SIBUM
DSpace software copyright © 2002-2018  DuraSpace