Vista simple de metadatos

dc.contributor.authorValencia, Felipe J. [Univ Mayor, Fac Ciencias, Nucleo Matemat Fis & Estadist, Santiago, Chile]es_CL
dc.contributor.authorReyes, Paula N.es_CL
dc.contributor.authorVega, Héctores_CL
dc.contributor.authorRuestes, Carloses_CL
dc.contributor.authorRogan, Josées_CL
dc.contributor.authorValdivia, J. A.es_CL
dc.contributor.authorKiwi, Migueles_CL
dc.date.accessioned2020-04-08T14:11:55Z
dc.date.accessioned2020-04-13T18:12:54Z
dc.date.available2020-04-08T14:11:55Z
dc.date.available2020-04-13T18:12:54Z
dc.date.issued2018es_CL
dc.identifier.citationReyes, P. N., Valencia, F. J., Vega, H., Ruestes, C., Rogan, J., Valdivia, J. A., & Kiwi, M. (2018). The stability of hollow nanoparticles and the simulation temperature ramp. Inorganic Chemistry Frontiers, 5(5), 1139-1144.es_CL
dc.identifier.issn2052-1553es_CL
dc.identifier.urihttps://doi.org/10.1039/c7qi00822hes_CL
dc.identifier.urihttp://repositorio.umayor.cl/xmlui/handle/sibum/6296
dc.description.abstractHollow nanoparticles (hNPs) are of interest because their large cavities and small thickness give rise to a large surface to volume ratio. However, in general they are not in equilibrium and far from their global energy minimum, which often makes them unstable against perturbations. In fact, a temperature increase can induce a structural collapse into a nanoparticle, and consequently a loss of their unique properties. This problem has been studied by means of molecular dynamics (MD) simulations, but without emphasis on the speed of the temperature increase. Here we explore how the temperature variation, and the rate at which it is varied in MD simulations, determines the final conformation of the hNPs. In particular, we show how different temperature ramps determine the final shape of Pt hNPs that initially have an external radius between 0.7 and 24 nm, and an internal radius between 0.19 and 2.4 nm. In addition, we also perform the simulations of other similar metals like Ag and Au. Our results indicate that the temperature ramp strongly modifies the final hNP shape, even at ambient temperature. In fact, a rapid temperature increase leads to the formation of stacking faults and twin boundaries which are not generated by a slower temperature increase. Quantitative criteria are established and they indicate that the stacking fault energy is the dominant parameter.es_CL
dc.description.sponsorshipFondo Nacional de Investigaciones Cientificas y Tecnologicas (FONDECYT, Chile)Comision Nacional de Investigacion Cientifica y Tecnologica (CONICYT)CONICYT FONDECYT [1160639, 1150718]; Financiamiento Basal para Centros Cientificos y Tecnologicos de ExcelenciaComision Nacional de Investigacion Cientifica y Tecnologica (CONICYT)CONICYT PIA/BASAL [FB-0807]; AFOSRUnited States Department of DefenseAir Force Office of Scientific Research (AFOSR) [FA9550-16-1-0122, FA9550-16-1-0384]; ANPCyTANPCyT [PICT-2015-0342]; CONICYTComision Nacional de Investigacion Cientifica y Tecnologica (CONICYT) [21140948]es_CL
dc.description.sponsorshipThe authors thank Eduardo M. Bringa for useful comments. This work was supported by the Fondo Nacional de Investigaciones Cientificas y Tecnologicas (FONDECYT, Chile) under grant #1160639 (MK and JR) and #1150718 (JAV), and Financiamiento Basal para Centros Cientificos y Tecnologicos de Excelencia FB-0807 (FV, JR, JAV and MK). MK and FV were supported by AFOSR Grants FA9550-16-1-0122 and FA9550-16-1-0384. CJR thanks ANPCyT PICT-2015-0342. FV was supported by CONICYT Doctoral Fellowship grant #21140948. This research was partially carried out at the supercomputing infrastructure of the NLHPC (ECM-02).es_CL
dc.language.isoenes_CL
dc.publisherROYAL SOC CHEMISTRYes_CL
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile
dc.sourceInorg. Chem. Front., MAY 2018. 5(5): p. 1139-1144
dc.subjectChemistry, Inorganic & Nucleares_CL
dc.titleThe stability of hollow nanoparticles and the simulation temperature rampes_CL
dc.typeArtículoes_CL
umayor.facultadCIENCIASes_CL
umayor.politicas.sherpa/romeoThis is a RoMEO ungraded journal (Las políticas de este editor no han sido verificadas por RoMEO). Disponible en: http://sherpa.ac.uk/romeo/index.phpes_CL
umayor.indexadoWOS:000432586100019es_CL
umayor.indexadoSIN PMIDes_CL
dc.identifier.doiDOI: 10.1039/c7qi00822hes_CL]
umayor.indicadores.wos-(cuartil)Q1es_CL
umayor.indicadores.scopus-(scimago-sjr)SCIMAGO/ INDICE H: 35 Hes_CL


Vista simple de metadatos



Modificado por: Sistema de Bibliotecas Universidad Mayor - SIBUM
DSpace software copyright © 2002-2018  DuraSpace