Vista simple de metadatos

dc.contributor.authorGonzález, Rafael, I [Univ Mayor, Fac Ciencias, Ctr Nanotecnol Aplicada, Santiago, Chile]es_CL
dc.contributor.authorValencia, Felipe [Univ Mayor, Fac Ciencias, DAiTA Lab, Santiago, Chile]es_CL
dc.contributor.authorRojas-Nunez, Javieres_CL
dc.contributor.authorBringa, Eduardo M.es_CL
dc.contributor.authorAllende, Sebastiánes_CL
dc.contributor.authorPalma, Juan L.es_CL
dc.contributor.authorPereira, Alejandroes_CL
dc.contributor.authorEscrig, Juanes_CL
dc.contributor.authorBaltazar, Samuel E.es_CL
dc.date.accessioned2020-04-12T14:11:55Z
dc.date.accessioned2020-04-14T15:37:39Z
dc.date.available2020-04-12T14:11:55Z
dc.date.available2020-04-14T15:37:39Z
dc.date.issued2019es_CL
dc.identifier.citationRojas-Nunez, J., Valencia, F., Gonzalez, R. I., Bringa, E. M., Allende, S., Palma, J. L., ... & Baltazar, S. E. (2019). Mechanical performance of lightweight polycrystalline Ni nanotubes. Computational Materials Science, 168, 81-86.es_CL
dc.identifier.issn0927-0256es_CL
dc.identifier.issn1879-0801es_CL
dc.identifier.urihttps://doi.org/10.1016/j.commatsci.2019.05.062es_CL
dc.identifier.urihttp://repositorio.umayor.cl/xmlui/handle/sibum/6396
dc.description.abstractThe mechanical properties of metallic nanowires and nanotubes were investigated using atomistic molecular dynamics simulations on Ni polycrystalline structures, similar to those experimentally obtained by Atomic Layer Deposition. We studied the response of nanostructures under uniaxial deformations with different thickness, geometry, and crystalline degree. Plastic deformation is due to stacking fault and coherent twin boundary formation, and to grain boundary activity. Different fracture processes are obtained from these systems, being the thin nanotubes failing thanks to a mix of brittle failure by grain boundary decohesion and ductile fracture due to significantly more twins than with a thicker nanotube and nanowire during the ductile fracture. The stress-strain curves, atomic displacements, and defects formation were analyzed, finding that nanotubes with a fraction of the volumetric mass have practically the same Young modulus and ultimate tensile stress, while fracture strain is slightly larger for nanowire. From all these studied cases, it is remarkable the result where ultra-thin nanotubes can withstand a 21% of tensile stress-strain with a similar yield strength than nanowires, but with a volumetric mass reduction of 60%, offering a lightweight alternative to design mechanical nanodevices with minimal loss of mechanical performance.es_CL
dc.description.sponsorshipDICYT [041931BR]; POSTDOC_DICYT [041831EM]; Basal Funding for Scientific and Technological CentersComision Nacional de Investigacion Cientifica y Tecnologica (CONICYT)CONICYT PIA/BASAL [FB0807]; scholarship grant CONICYT-PCHA"Doctorado Nacional"[2015-21150699]; FONDECYTComision Nacional de Investigacion Cientifica y Tecnologica (CONICYT)CONICYT FONDECYT [1161018, 11150671, 11171045, 11180557, 1150952, 1190662]; Air Force Office of Scientific ResearchUnited States Department of DefenseAir Force Office of Scientific Research (AFOSR) [FA9550-181-0438]; Fondequip [EQM120095]; NLHPC [ECM-02]; HPC USACH-SEGIC [ECM-02]; [PICT2014-0696]es_CL
dc.description.sponsorshipThe authors thank the support of DICYT project 041931BR and POSTDOC_DICYT 041831EM, the Basal Funding for Scientific and Technological Centers under project FB0807, scholarship grant CONICYT-PCHA"Doctorado Nacional"2015-21150699. The authors acknowledge the support of FONDECYT under grant 1161018, 11150671, 11171045, 11180557 and 1150952, 1190662 as well as the Air Force Office of Scientific Research under award number FA9550-181-0438. The synthesis of the nanotubes was financed by Fondequip EQM120095. E.M.B. thanks the funding from PICT2014-0696. This research was partially supported by the supercomputing infrastructure of the NLHPC (ECM-02) and partially supported by the supercomputing infrastructure of the HPC USACH-SEGIC (ECM-02).es_CL
dc.language.isoenes_CL
dc.publisherELSEVIER SCIENCE BVes_CL
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile
dc.sourceComput. Mater. Sci., OCT, 2019. 168: p. 81-86
dc.subjectMaterials Science, Multidisciplinaryes_CL
dc.titleMechanical performance of lightweight polycrystalline Ni nanotubeses_CL
dc.typeArtículoes_CL
umayor.facultadCIENCIAS
umayor.politicas.sherpa/romeoRoMEO green journal (Se puede archivar el pre-print y el post-print o versión de editor/PDF). Disponible en: http://sherpa.ac.uk/romeo/index.phpes_CL
umayor.indexadoWOS:000475556000011es_CL
umayor.indexadoSIN PMIDes_CL
dc.identifier.doiDOI: 10.1016/j.commatsci.2019.05.062es_CL]
umayor.indicadores.wos-(cuartil)Q2es_CL
umayor.indicadores.scopus-(scimago-sjr)SCIMAGO/ INDICE H: 97 Hes_CL


Vista simple de metadatos



Modificado por: Sistema de Bibliotecas Universidad Mayor - SIBUM
DSpace software copyright © 2002-2018  DuraSpace