Vista simple de metadatos

dc.contributor.authorAmigo, Nicolás [Univ Mayor, Fac Estudios Interdisciplinarios, Nucleo Matemat Fis & Estadist]es_CL
dc.contributor.authorSepúlveda-Macias, Matiases_CL
dc.contributor.authorGutiérrez, Gonzaloes_CL
dc.date.accessioned2020-04-12T14:11:55Z
dc.date.accessioned2020-04-14T15:37:42Z
dc.date.available2020-04-12T14:11:55Z
dc.date.available2020-04-14T15:37:42Z
dc.date.issued2019es_CL
dc.identifier.citationAmigo, N., Sepulveda-Macias, M., & Gutierrez, G. (2019). Enhancement of mechanical properties of metallic glass nanolaminates via martensitic transformation: Atomistic deformation mechanism. Materials Chemistry and Physics, 225, 159-168.es_CL
dc.identifier.issn0254-0584es_CL
dc.identifier.issn1879-3312es_CL
dc.identifier.urihttps://doi.org/10.1016/j.matchemphys.2018.12.050es_CL
dc.identifier.urihttp://repositorio.umayor.cl/xmlui/handle/sibum/6429
dc.description.abstractMetallic glasses with embedded crystalline phases have been experimentally reported to exhibit enhanced mechanical properties. To further explore this observation, we employed molecular dynamics simulations to study Cu50Zr50/B2-CuZr nanolaminates subjected to tensile tests under iso-stress and iso-strain conditions. The onset of plasticity, martensitic transformation, and failure mechanisms were inspected at atomic level. It was found that most of the B2-CuZr phase undergoes martensitic transformation, enhancing the strength of the nanolaminate thanks to the second elastic regime developed in the crystalline layer. Interestingly, this transformation is promoted due to the rearrangement of Cu atoms at the amorphous/crystalline interface, without the direct influence of shear transformation zones. Regarding the failure mechanism, it was observed that it depends on the deformation condition: the iso-stress condition leads to void formation at the interface, whereas the iso-strain condition triggers B2 phase bands amorphization. Finally, tension-compression tests on Cu50Zr50/B2-CuZr nanolaminates under iso-strain revealed that the crystalline layer undergoes reversible B2-monoclinic transformation, decreasing the dissipated energy during mechanical loading when compared to the pure metallic glass sample.es_CL
dc.description.sponsorshipCONICYTComision Nacional de Investigacion Cientifica y Tecnologica (CONICYT) [21151448, 21140904]; [FONDECYT 1171127]es_CL
dc.description.sponsorshipNA thanks to CONICYT PhD fellowship No. 21151448. M.S-M. thanks to CONICYT Ph.D. fellowship No. 21140904. G.G. thanks the partial support to grant FONDECYT 1171127.es_CL
dc.language.isoenes_CL
dc.publisherELSEVIER SCIENCE SAes_CL
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile
dc.sourceMater. Chem. Phys., MAR, 2019. 225: p. 159-168
dc.subjectMaterials Science, Multidisciplinaryes_CL
dc.titleEnhancement of mechanical properties of metallic glass nanolaminates via martensitic transformation: Atomistic deformation mechanismes_CL
dc.typeArtículoes_CL
umayor.facultadCIENCIAS
umayor.politicas.sherpa/romeoRoMEO green journal (Se puede archivar el pre-print y el post-print o versión de editor/PDF). Disponible en: http://sherpa.ac.uk/romeo/index.phpes_CL
umayor.indexadoWOS:000463847900023es_CL
umayor.indexadoSIN PMIDes_CL
dc.identifier.doiDOI: 10.1016/j.matchemphys.2018.12.050es_CL]
umayor.indicadores.wos-(cuartil)Q2es_CL
umayor.indicadores.scopus-(scimago-sjr)SCIMAGO/ INDICE H: 132 Hes_CL


Vista simple de metadatos



Modificado por: Sistema de Bibliotecas Universidad Mayor - SIBUM
DSpace software copyright © 2002-2018  DuraSpace