Vista simple de metadatos

dc.contributor.authorGonzález, Rafael I. [Univ Mayor, Fac Ciencias, Ctr Nanotecnol Aplicada, Santiago, Chile]es_CL
dc.contributor.authorPrada, Alejandro [Univ Mayor, Fac Ciencias, Ctr Nanotecnol Aplicada, Santiago, Chile]es_CL
dc.contributor.authorGonzález-Rubio, Guillermo; de Oliveira, Thais Milagres; Albrecht, Wiebke; Díaz-Nunez, Pablo; Carlos Castro-Palacio, Juan; Scarabelli, Leonardo; Banares, Luis; Rivera, Antonio; Liz-Marzan, Luis M.; Pena-Rodríguez, Ovidio; Bals, Sara; Guerrero-Martínez, Andreses_CL
dc.date.accessioned2020-04-12T14:11:55Z
dc.date.accessioned2020-04-14T15:37:46Z
dc.date.available2020-04-12T14:11:55Z
dc.date.available2020-04-14T15:37:46Z
dc.date.issued2020es_CL
dc.identifier.citationGonzález-Rubio, G., Milagres de Oliveira, T., Albrecht, W., Díaz-Núñez, P., Castro-Palacio, J. C., Prada, A., ... & Liz-Marzán, L. M. (2020). Formation of Hollow Gold Nanocrystals by Nanosecond Laser Irradiation. The Journal of Physical Chemistry Letters.es_CL
dc.identifier.issn1948-7185es_CL
dc.identifier.urihttps://doi.org/10.1021/acs.jpclett.9b03574es_CL
dc.identifier.urihttp://repositorio.umayor.cl/xmlui/handle/sibum/6472
dc.description.abstractThe irradiation of spherical gold nanoparticles (AuNPs) with nanosecond laser pulses induces shape transformations yielding nanocrystals with an inner cavity. The concentration of the stabilizing surfactant, the use of moderate pulse fluences, and the size of the irradiated AuNPs determine the efficiency of the process and the nature of the void. Hollow-nanocrystals are obtained when molecules from the surrounding medium (e.g., water and organic matter derived from the surfactant) are trapped during laser pulse irradiation. These experimental observations suggest the existence of a subtle balance between the heating and cooling processes experienced by the nanocrystals, which induce their expansion and subsequent recrystallization keeping exogenous matter inside. The described approach provides valuable insight into the mechanism of interaction of a pulsed nanosecond laser with AuNPs, along with interesting prospects for the development of hollow plasmonic nanoparticles with potential applications related to gas and liquid storage at the nanoscale.es_CL
dc.description.sponsorshipSpanish Ministry of Science, Innovation and Universities (MICIU) [RTI2018-095844-B-I00, PGC2018-096444-B-I00, ENE2015-70300-C3-3, MAT2017-86659-R]; Madrid Regional Government [P2018/NMT-4389, P2018/EMT-4437]; European Commission (EUSMI) [731019]; European Commission (ESTEEM3) [823717]; Spanish State Research Agency [MDM-2017-0720]; European Research Council (ERC, REALNANO)European Research Council (ERC) [815128]; Marie Sklodowska-Curie Actions (MSCA) in Horizon 2020 program (SOPMEN) [797153]; FONDECYTComision Nacional de Investigacion Cientifica y Tecnologica (CONICYT)CONICYT FONDECYT [3190123, 11180557]; Financiamiento Basal para Centros Cientificos y Tecnologicos de ExcelenciaComision Nacional de Investigacion Cientifica y Tecnologica (CONICYT)CONICYT PIA/BASAL [FB-0807]; NLHPC [ECM-02]; EUROfusion Consortium [ENR-IFE19.CCFE-01]; COST Action TUMIEEEuropean Cooperation in Science and Technology (COST) [CA17126]es_CL
dc.description.sponsorshipThis work has been funded by the Spanish Ministry of Science, Innovation and Universities (MICIU) (Grants RTI2018-095844-B-I00, PGC2018-096444-B-I00, ENE2015-70300-C3-3, and MAT2017-86659-R), the EUROfusion Consortium (Grant ENR-IFE19.CCFE-01) and the Madrid Regional Government (Grants P2018/NMT-4389 and P2018/EMT-4437). This project has received funding from the European Commission (grant 731019, EUSMI & grant 823717, ESTEEM3). The publication is based also upon work from COST Action TUMIEE (CA17126). The facilities provided by the Center for Ultrafast Lasers at Complutense University of Madrid are gratefully acknowledged. The authors also acknowledge the computer resources and technical assistance provided by the Centro de Supercomputacion y Visualizacion de Madrid (CeSViMa). L.M.L.-M. acknowledges the Maria de Maeztu Units of Excellence Program from the Spanish State Research Agency (Grant MDM-2017-0720). This project has also received funding from the European Research Council (ERC Consolidator Grant 815128, REALNANO). W.A. acknowledges an Individual Fellowship funded by the Marie Sklodowska-Curie Actions (MSCA) in Horizon 2020 program (Grant 797153, SOPMEN). A.P. and R.I.G. acknowledge the support of FONDECYT under Grants 3190123 and 11180557 and Financiamiento Basal para Centros Cientificos y Tecnologicos de Excelencia FB-0807. This research was partially supported by the supercomputing infrastructure of the NLHPC (ECM-02).es_CL
dc.language.isoenes_CL
dc.publisherAMER CHEMICAL SOCes_CL
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile
dc.sourceJ. Phys. Chem. Lett., FEB, 2020. 11(3): p. 670-677
dc.subjectChemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Atomic, Molecular & Chemicales_CL
dc.titleFormation of Hollow Gold Nanocrystals by Nanosecond Laser Irradiationes_CL
dc.typeArtículoes_CL
umayor.facultadCIENCIAS
umayor.politicas.sherpa/romeoRoMEO white journal (El archivo no está formalmente admitido). Disponible en: http://sherpa.ac.uk/romeo/index.phpes_CL
umayor.indexadoWOS:000512223400012es_CL
umayor.indexadoPMID: 31905285es_CL
dc.identifier.doiDOI: 10.1021/acs.jpclett.9b03574es_CL]
umayor.indicadores.wos-(cuartil)Q1es_CL
umayor.indicadores.scopus-(scimago-sjr)SCIMAGO/ INDICE H: 161 Hes_CL


Vista simple de metadatos



Modificado por: Sistema de Bibliotecas Universidad Mayor - SIBUM
DSpace software copyright © 2002-2018  DuraSpace