El Repositorio Institucional de la Universidad Mayor, tiene como objetivo publicar, en formato digital, todos los objetos derivados de su producción científica, académica, cultural y artística. En palabras simples es una vitrina que pone en valor su patrimonio documental.
Vista simple de metadatos
| dc.contributor.author | Nilo-Poyanco, Ricardo [Univ Mayor, Fac Ciencias, Escuela Biotecnol, Santiago, Chile] | es_CL |
| dc.contributor.author | Young, Derek S. | es_CL |
| dc.contributor.author | Chen, Xi | es_CL |
| dc.contributor.author | Hewage, Dilrukshi C. | es_CL |
| dc.date.accessioned | 2020-04-12T14:11:55Z | |
| dc.date.accessioned | 2020-04-14T15:37:51Z | |
| dc.date.available | 2020-04-12T14:11:55Z | |
| dc.date.available | 2020-04-14T15:37:51Z | |
| dc.date.issued | 2019 | es_CL |
| dc.identifier.citation | Young, D. S., Chen, X., Hewage, D. C., & Nilo-Poyanco, R. (2019). Finite mixture-of-gamma distributions: estimation, inference, and model-based clustering. Advances in Data Analysis and Classification, 13(4), 1053-1082. | es_CL |
| dc.identifier.issn | 1862-5347 | es_CL |
| dc.identifier.issn | 1862-5355 | es_CL |
| dc.identifier.uri | https://doi.org/10.1007/s11634-019-00361-y | es_CL |
| dc.identifier.uri | http://repositorio.umayor.cl/xmlui/handle/sibum/6528 | |
| dc.description.abstract | Finite mixtures of (multivariate) Gaussian distributions have broad utility, including their usage for model-based clustering. There is increasing recognition of mixtures of asymmetric distributions as powerful alternatives to traditional mixtures of Gaussian and mixtures of t distributions. The present work contributes to that assertion by addressing some facets of estimation and inference for mixtures-of-gamma distributions, including in the context of model-based clustering. Maximum likelihood estimation of mixtures of gammas is performed using an expectation-conditional-maximization (ECM) algorithm. The Wilson-Hilferty normal approximation is employed as part of an effective starting value strategy for the ECM algorithm, as well as provides insight into an effective model-based clustering strategy. Inference regarding the appropriateness of a common-shape mixture-of-gammas distribution is motivated by theory from research on infant habituation. We provide extensive simulation results that demonstrate the strong performance of our routines as well as analyze two real data examples: an infant habituation dataset and a whole genome duplication dataset. | es_CL |
| dc.language.iso | en | es_CL |
| dc.publisher | SPRINGER HEIDELBERG | es_CL |
| dc.rights | Attribution-NonCommercial-NoDerivs 3.0 Chile | |
| dc.source | Adv. Data Anal. Classif., DIC, 2019. 13(4): p. 1053-1082 | |
| dc.subject | Statistics & Probability | es_CL |
| dc.title | Finite mixture-of-gamma distributions: estimation, inference, and model-based clustering | es_CL |
| dc.type | Artículo | es_CL |
| umayor.facultad | CIENCIAS | |
| umayor.politicas.sherpa/romeo | RoMEO green journal (Se puede archivar el pre-print y el post-print o versión de editor/PDF). Disponible en: http://sherpa.ac.uk/romeo/index.php | es_CL |
| umayor.indexado | WOS:000496565800010 | es_CL |
| umayor.indexado | SIN PMID | es_CL |
| dc.identifier.doi | DOI: 10.1007/s11634-019-00361-y | es_CL] |
| umayor.indicadores.wos-(cuartil) | Q1 | es_CL |
| umayor.indicadores.scopus-(scimago-sjr) | SCIMAGO/ INDICE H: 23 H | es_CL |
Vista simple de metadatos