Vista simple de metadatos

dc.contributor.authorGonzález R.I., Bringa E.M., Kiwi M.es_CL
dc.contributor.authorValencia Felipe J. [Núcleo de Matemáticas, Física y Estadística, Facultad de Ciencias, Universidad Mayor, Chile]es_CL
dc.date.accessioned2020-08-12T14:11:55Z
dc.date.accessioned2020-08-12T18:13:29Z
dc.date.available2020-08-12T14:11:55Z
dc.date.available2020-08-12T18:13:29Z
dc.date.issued2017es_CL
dc.identifier.citationValencia, F. J., González, R. I., Bringa, E. M., & Kiwi, M. (2017). Hillock formation on nanocrystalline diamond. Carbon, 119, 219-224.es_CL
dc.identifier.issn0008-6223es_CL
dc.identifier.issn1873-3891es_CL
dc.identifier.urihttp://repositorio.uchile.cl/bitstream/handle/2250/147075/Hillock-formation.pdf?sequence=1es_CL
dc.identifier.urihttps://doi.org/10.1016/j.carbon.2017.04.020es_CL
dc.identifier.urihttp://repositorio.umayor.cl/xmlui/handle/sibum/6942
dc.description.abstractHillock formation on nanocrystalline (nc) diamond under swift heavy ion irradiation is studied by means of classical molecular dynamics. The irradiation is simulated by means of a thermal spike model, the nc samples include as many as 5 millions atoms. Our results show that hillocks on nc diamond can be created for stopping powers (SPe) in the range of 12-17 keV/nm, and grain sizes less than 13 nm. For smaller values of the SPe only point defects are observed on the nc surface, while for larger SPe hillocks suffer a transition to crater-rim, because of the increased sputtering that is due to the large energy that the ions deposit. We observe that the sputtering yields depend quadratically on the stopping power, contrary to what has been obtained by simulations for some single crystal solids. In addition, our results show that hillocks are smaller for 5 and 7 nm grain sizes, due to the large free volume that is available on the grain boundaries. Instead, for 10 and 13 nm the hillock is limited only to the amorphization of the grain closest to the surface. No hillock formation is expected for larger grain sizes, because of the transition of the nc to pristine diamond, where no hillock formation has been observed.es_CL
dc.description.sponsorshipEMB thanks useful comments by D. Schwen, P. Erhart, and K. Nordlund, and support from PICT-2014-0696 (ANPCyT), a SeCTyP-UN Cuyo under Grant M003. This work was supported by the Fondo Nacional de Investigaciones Cientificas y Tecnologicas (FONDECYT, Chile) under grants #1160639 and 1130272 (MK), and Financiamiento Basal para Centros Cientificos y Tecnologicos de Excelencia FB-0807 (RG, FV, JM, and MK). MK was supported by AFOSR Grant FA9550-16-1-0122. FV was supported by CONICYT Doctoral Fellowship grant #21140948.es_CL
dc.format.extentArtículo original
dc.language.isoenes_CL
dc.publisherPERGAMON-ELSEVIER SCIENCE LTDes_CL
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile
dc.sourceCarbon, 2017. 119(): p: 219-224
dc.titleHillock formation on nanocrystalline diamondes_CL
dc.typeArtículo o paperes_CL
umayor.facultadFacultad de Ciencias
umayor.indizadorCOT
umayor.politicas.sherpa/romeoRoMEO GREEN journal (Se puede archivar el pre-print y el post-print o versión de editor/PDF). Disponible en: http://sherpa.ac.uk/romeo/index.phpes_CL
umayor.indexadoWOSes_CL
umayor.indexadoSCOPUSes_CL
dc.identifier.doiDOI: 10.1016/j.carbon.2017.04.020es_CL]
umayor.indicadores.wos-(cuartil)Q1es_CL
umayor.indicadores.scopus-(scimago-sjr)2,23es_CL
umayor.indicadores.scopus-(scimago-sjr)ÍNDICE H: 0es_CL


Vista simple de metadatos



Modificado por: Sistema de Bibliotecas Universidad Mayor - SIBUM
DSpace software copyright © 2002-2018  DuraSpace