El Repositorio Institucional de la Universidad Mayor, tiene como objetivo publicar, en formato digital, todos los objetos derivados de su producción científica, académica, cultural y artística. En palabras simples es una vitrina que pone en valor su patrimonio documental.
Vista simple de metadatos
| dc.contributor | Springer Open | es |
| dc.contributor.author | Masias, Victor H. | |
| dc.contributor.author | Hecking, Tobias | |
| dc.contributor.author | Crespo, Fernando [Univ Mayor, Fac Estudios Interdisciplinarios, DAiTA Lab, Chile] | |
| dc.contributor.author | Hoppe, H. Ulrich | |
| dc.date.accessioned | 2021-11-12T22:08:19Z | |
| dc.date.available | 2021-11-12T22:08:19Z | |
| dc.date.issued | 2019 | |
| dc.identifier.citation | Masias, V.H., Hecking, T., Crespo, F. et al. Detecting social media users based on pedestrian networks and neighborhood attributes: an observational study. Appl Netw Sci 4, 96 (2019). https://doi.org/10.1007/s41109-019-0222-4 | es |
| dc.identifier.issn | eISSN: 2364-8228 | |
| dc.identifier.other | WOS: 000684635500002 | |
| dc.identifier.uri | http://repositorio.umayor.cl/xmlui/handle/sibum/8136 | |
| dc.identifier.uri | https://appliednetsci.springeropen.com/track/pdf/10.1007/s41109-019-0222-4.pdf | |
| dc.identifier.uri | https://doi.org/10.1007/s41109-019-0222-4 | |
| dc.description.abstract | This paper proposes a methodological approach to explore the ability to detect social media users based on pedestrian networks and neighborhood attributes. We propose the use of a detection function belonging to the Spatial Capture-Recapture (SCR) which is a powerful analytical approach for detecting and estimating the abundance of biological populations. To test our approach, we created a set of proxy measures for the importance of pedestrian streets as well as neighborhood attributes. The importance of pedestrian streets was measured by centrality indicators. Additionally, proxy measures of neighborhood attributes were created using multivariate analysis of census data. A series of candidate models were tested to determine which attributes are most important for detecting social media users. The results of the analysis provide information on which attributes of the city have promising potential for detecting social media users. Finally, the main results and findings, limitations and extended use of the proposed methodological approach are discussed. | es |
| dc.description.sponsorship | This work is supported by the German Research Foundation (DFG) under grant No. GRK 2167, Research Training Group "User-Centred Social Media". We acknowledge support by the Open Access Publication Fund of the University of Duisburg-Essen. | es |
| dc.format.extent | 24 p., PDF | es |
| dc.language.iso | en_US | es |
| dc.publisher | Chile. Universidad Mayor | es |
| dc.rights | Attribution-NonCommercial-NoDerivs 3.0 Chile | es |
| dc.title | Detecting social media users based on pedestrian networks and neighborhood attributes: an observational study | es |
| dc.type | Artículo o Paper | es |
| umayor.indizador | COT | es |
| umayor.politicas.sherpa/romeo | Licencia CC BY. Disponible en: https://v2.sherpa.ac.uk/id/publication/30811 | es |
| umayor.indexado | Web of Science | es |
| dc.identifier.doi | 10.1007/s41109-019-0222-4 | |
| umayor.indicadores.wos-(cuartil) | Q1 | |
| umayor.indicadores.scopus-(scimago-sjr) | SCIMAGO/ INDICE H: 13 H | |
| umayor.indicadores.scopus-(scimago-sjr) | SJR 0.41 | |
Vista simple de metadatos