Vista simple de metadatos

dc.contributorSpringer Openes
dc.contributor.authorMasias, Victor H.
dc.contributor.authorHecking, Tobias
dc.contributor.authorCrespo, Fernando [Univ Mayor, Fac Estudios Interdisciplinarios, DAiTA Lab, Chile]
dc.contributor.authorHoppe, H. Ulrich
dc.date.accessioned2021-11-12T22:08:19Z
dc.date.available2021-11-12T22:08:19Z
dc.date.issued2019
dc.identifier.citationMasias, V.H., Hecking, T., Crespo, F. et al. Detecting social media users based on pedestrian networks and neighborhood attributes: an observational study. Appl Netw Sci 4, 96 (2019). https://doi.org/10.1007/s41109-019-0222-4es
dc.identifier.issneISSN: 2364-8228
dc.identifier.otherWOS: 000684635500002
dc.identifier.urihttp://repositorio.umayor.cl/xmlui/handle/sibum/8136
dc.identifier.urihttps://appliednetsci.springeropen.com/track/pdf/10.1007/s41109-019-0222-4.pdf
dc.identifier.urihttps://doi.org/10.1007/s41109-019-0222-4
dc.description.abstractThis paper proposes a methodological approach to explore the ability to detect social media users based on pedestrian networks and neighborhood attributes. We propose the use of a detection function belonging to the Spatial Capture-Recapture (SCR) which is a powerful analytical approach for detecting and estimating the abundance of biological populations. To test our approach, we created a set of proxy measures for the importance of pedestrian streets as well as neighborhood attributes. The importance of pedestrian streets was measured by centrality indicators. Additionally, proxy measures of neighborhood attributes were created using multivariate analysis of census data. A series of candidate models were tested to determine which attributes are most important for detecting social media users. The results of the analysis provide information on which attributes of the city have promising potential for detecting social media users. Finally, the main results and findings, limitations and extended use of the proposed methodological approach are discussed.es
dc.description.sponsorshipThis work is supported by the German Research Foundation (DFG) under grant No. GRK 2167, Research Training Group "User-Centred Social Media". We acknowledge support by the Open Access Publication Fund of the University of Duisburg-Essen.es
dc.format.extent24 p., PDFes
dc.language.isoen_USes
dc.publisherChile. Universidad Mayores
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chilees
dc.titleDetecting social media users based on pedestrian networks and neighborhood attributes: an observational studyes
dc.typeArtículo o Paperes
umayor.indizadorCOTes
umayor.politicas.sherpa/romeoLicencia CC BY. Disponible en: https://v2.sherpa.ac.uk/id/publication/30811es
umayor.indexadoWeb of Sciencees
dc.identifier.doi10.1007/s41109-019-0222-4
umayor.indicadores.wos-(cuartil)Q1
umayor.indicadores.scopus-(scimago-sjr)SCIMAGO/ INDICE H: 13 H
umayor.indicadores.scopus-(scimago-sjr)SJR 0.41


Vista simple de metadatos



Modificado por: Sistema de Bibliotecas Universidad Mayor - SIBUM
DSpace software copyright © 2002-2018  DuraSpace