Vista simple de metadatos

dc.contributorAmerican Chemical Societyes
dc.contributor.authorValencia, Felipe J. [Univ Mayor, Fac Estudios Interdisciplinarios, Ctr Invest DAiTA Lab, Chile]
dc.contributor.authorRamírez, Max
dc.contributor.authorVaras, Alejandro
dc.contributor.authorRogan, José
dc.date.accessioned2021-11-16T18:26:54Z
dc.date.available2021-11-16T18:26:54Z
dc.date.issued2020
dc.identifier.citationValencia, F. J., Ramírez, M., Varas, A., & Rogan, J. (2020). Understanding the stability of hollow nanoparticles with polycrystalline shells. The Journal of Physical Chemistry C, 124(18), 10143-10149.es
dc.identifier.issn1932-7447
dc.identifier.issneISSN: 1932-7455
dc.identifier.otherWOS: 000535175400052
dc.identifier.otherScopus: 2-s2.0-85085200469
dc.identifier.urihttp://repositorio.umayor.cl/xmlui/handle/sibum/8155
dc.identifier.urihttps://repositorio.uchile.cl/handle/2250/175464
dc.identifier.urihttps://pubs.acs.org/doi/10.1021/acs.jpcc.0c00258
dc.identifier.urihttps://doi.org/10.1021/acs.jpcc.0c00258
dc.description.abstractThe existence of polycrystalline shells has been widely reported in the synthesis of hollow nanoparticles; however, the exact role displayed by the grain boundaries on the stability has been scarcely studied. By including them, in this work, we study for the first time the contribution of the polycrystalline structure in the stability of this unique kind of nanostructures, addressing at the same time, a more realistic modeling of hollow nanoparticles. The role of the polycrystalline structure was studied in gold hollow nanoparticles using molecular dynamics simulations for a wide range of shell thickness and grain sizes. One of the main findings is that the shell thickness necessary for transition from a spherical to a shrunk structure is related to the grain size reduction. The results suggest that to achieve larger hollow nanoparticles, less defective shells are necessary, with single-crystal shells establishing an upper limit in the size that a structure can attain. The cavity shrinkage in a polycrystalline HNP is due to a complex combination of grain diffusion, rotations, dislocation emission, and twining, all of them activated from the grain boundary regions. Our findings suggest that the polycrystalline structure is a crucial parameter to control and improve the stability of the hollow nanoparticles.es
dc.description.sponsorshipThis work was supported by the Fondo Nacional de Investigaciones Cientificas y Tecnologicas (FONDECYT, Chile) under grants #1190662 (F.J.V., M.R., A.V. and J.R.), AFOSR Grant FA9550-16-1-0122. FV thanks the FONDECYT de iniciacio ' n under grant #11190484. All authors thank Financiamiento Basal para Centros Cientificos y Tecnologicos de Excelencia AFB180001. Powered@NLHPC: this research was partially supported by the supercomputing infrastructure of the NLHPC (ECM-02).es
dc.format.extent7 p., PDFes
dc.language.isoen_USes
dc.publisherChile. Universidad Mayores
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chilees
dc.titleUnderstanding the Stability of Hollow Nanoparticles with Polycrystalline Shellses
dc.typeArtículo o Paperes
umayor.indizadorCOTes
umayor.politicas.sherpa/romeoLicencia CC BY-NC-ND 4.0. Disponible en: https://v2.sherpa.ac.uk/id/publication/7799es
umayor.indexadoWeb of Sciencees
umayor.indexadoScopuses
umayor.indexadoRepositorio UCHILEes
dc.identifier.doi10.1021/acs.jpcc.0c00258
umayor.indicadores.wos-(cuartil)Q1
umayor.indicadores.scopus-(scimago-sjr)SCIMAGO/ INDICE H: 289 H
umayor.indicadores.scopus-(scimago-sjr)SJR 1.4


Vista simple de metadatos



Modificado por: Sistema de Bibliotecas Universidad Mayor - SIBUM
DSpace software copyright © 2002-2018  DuraSpace