Vista simple de metadatos

dc.contributorUniv Mayor, Ctr Econ & Polit Sociales, Chilees
dc.contributor.authorRosales-Salas, Jorge Agustín [Univ Mayor, Ctr Econ & Polit Sociales, Chile]
dc.contributor.authorMaldonado, Sebastián
dc.contributor.authorSeret, Alex
dc.date.accessioned2022-02-24T14:31:22Z
dc.date.available2022-02-24T14:31:22Z
dc.date.issued2020-05
dc.identifier.citationRosales-Salas, J., Maldonado, S., & Seret, A. (2020). Mining sequences in activities for time use analysis. Intelligent Data Analysis, 24(2), 339-362.es
dc.identifier.issn1088-467X
dc.identifier.issneISSN: 1571-4128
dc.identifier.otherWOS: 000532497000007
dc.identifier.urihttp://repositorio.umayor.cl/xmlui/handle/sibum/8322
dc.identifier.urihttps://content.iospress.com/articles/intelligent-data-analysis/ida184361
dc.identifier.urihttps://repositorio.uchile.cl/bitstream/handle/2250/175525/Mining-sequences.pdf?sequence=1&isAllowed=y
dc.identifier.urihttp://dx.doi.org/10.3233/IDA-184361
dc.description.abstractBy providing a complete record of time use for a given population, time use studies enable investigators to test various hypotheses concerning that behavior. However, the large number and variety of activity combinations that are relevant in time allocation choices and, therefore, time use analysis, makes measuring or even fully identifying all of them impossible without the proper data mining tools. In this paper, we propose a framework for mining sequences of activities to capture more complex patterns than those currently available on how individuals organize their days. The proposed framework was applied to the American Time Use Surveys (ATUS) dataset to explore individual time allocation behavior, identifying sequences of activities that are frequent. For example, patterns such as the preferred activities that are performed before and after specific activities (such as paid work or leisure) are discussed in terms of their frequency. Such patterns are not easy to reveal using traditional descriptive analysis.es
dc.description.sponsorshipJorge Rosales-Salas acknowledges Fondecyt, Chile, Grant 11180337. Sebastian Maldonado was supported by FONDECYT projects 1160738 and 1181809. The authors gratefully acknowledge financial support from CONICYT PIA/BASAL AFB180003.es
dc.format.extent2 p., PDFes
dc.language.isoen_USes
dc.publisherIOS Presses
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chilees
dc.titleMining sequences in activities for time use analysises
dc.typeArtículo o Paperes
umayor.indizadorCOTes
umayor.politicas.sherpa/romeoLicencia CC BY-NC 4.0. Disponible en: https://v2.sherpa.ac.uk/id/publication/1995es
umayor.indexadoWeb of Sciencees
umayor.indexadoRepositorio UCHILEes
dc.identifier.doi10.3233/IDA-184361
umayor.indicadores.wos-(cuartil)Q4
umayor.indicadores.scopus-(scimago-sjr)SCIMAGO/ INDICE H: 47 H
umayor.indicadores.scopus-(scimago-sjr)SJR 0.23


Vista simple de metadatos



Modificado por: Sistema de Bibliotecas Universidad Mayor - SIBUM
DSpace software copyright © 2002-2018  DuraSpace