Vista simple de metadatos

dc.contributorUniv Mayor, Fac Ciencias, Ctr Nanotecnol Aplicada, Chilees
dc.contributor.authorPinto, Benjamin [Univ Mayor, Escuela Construcc, Chile]
dc.contributor.authorValencia, Felipe J. [Univ Mayor, Fac Estudios Interdisciplinarios, Ctr Invest DAiTA Lab, Chile]
dc.contributor.authorKiwi, Miguel
dc.contributor.authorRuestes, Carlos J.
dc.contributor.authorBringa, Eduardo M. [Univ Mayor, Fac Ciencias, Ctr Nanotecnol Aplicada, Chile]
dc.contributor.authorRogan, José
dc.date.accessioned2022-02-24T18:34:48Z
dc.date.available2022-02-24T18:34:48Z
dc.date.issued2020-06
dc.identifier.citationValencia, F. J., Pinto, B., Kiwi, M., Ruestes, C. J., Bringa, E. M., & Rogan, J. (2020). Nanoindentation of polycrystalline pd hollow nanoparticles: grain size role. Computational Materials Science, 179, 109642.es
dc.identifier.issn0927-0256
dc.identifier.issneISSN: 1879-0801
dc.identifier.otherScopus: 2-s2.0-85082116845
dc.identifier.otherWOS: 000531814100013
dc.identifier.urihttp://repositorio.umayor.cl/xmlui/handle/sibum/8326
dc.identifier.urihttps://www.sciencedirect.com/science/article/abs/pii/S0927025620301336?via%3Dihub
dc.identifier.urihttps://doi.org/10.1016/j.commatsci.2020.109642
dc.identifier.urihttps://repositorio.uchile.cl/handle/2250/175527
dc.description.abstractPolycrystalline hollow nanoparticles present a unique combination of strength and flexibility. However, the exact role displayed by their grain structure in mechanical properties has not been yet fully understood. Here, by means of molecular dynamics simulations, the role of grain boundary structure during the nanoindentation of metallic hollow nanoparticles with a polycrystalline shell was investigated. Our simulations were performed for a range of grain sizes and shell thicknesses, including the large strain regime. Our results show that hNP mechanical properties can be controlled by tuning the grain size of the polycrystalline shell, following an inverse Hall-Perch type dependence with the grain size. Deformation involves dislocation activity, twin hardening, grain boundary sliding, coalescence, and rotation. For single crystal shells at large strain there is hardenning following the closure of the internal cavity. For nanocrystalline shells at large strains a constant flow stress regime is observed even for deformations as high as 80%, thanks to grain boundary activity. Surprisingly, some particular grain size not only leads to an improvement in strength, but also a flow stress higher than the observed in their single-crystalline counterparts. Our work, suggest that grain boundary structure can be employed to improve and tailor desired mechanical properties in hollow nanostructures.es
dc.description.sponsorshipThis work was supported by the Fondo Nacional de Investigaciones Cientificas y Tecnologicas (FONDECYT, Chile) under grants #1160639 (MK) and 1190662 (JR and FV), FONDECYT de Iniciacion #11190484 (FV), AFOSR Grant FA9550-16-1-0122, and Financiamiento Basal para Centros Cientificos y Tecnologicos de Excelencia AFB180001 (FV, MK and JR). EMB thanks support from grants PICT-2014-0696 (ANPCyT) and M003 (SeCTyP-UN Cuyo). Powered@NLHPC: this research was partially supported by the supercomputing infrastructure of the NLHPC (ECM-02).es
dc.format.extent7 p., PDFes
dc.language.isoen_USes
dc.publisherElsevieres
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chilees
dc.titleNanoindentation of polycrystalline Pd hollow nanoparticles: Grain size rolees
dc.typeArtículo o Paperes
umayor.indizadorCOTes
umayor.politicas.sherpa/romeoLicencia CC BY-NC-ND 4.0. Disponible en: https://v2.sherpa.ac.uk/id/publication/13692es
umayor.indexadoWeb of Sciencees
umayor.indexadoScopuses
umayor.indexadoRepositorio UCHILEes
dc.identifier.doi10.1016/j.commatsci.2020.109642
umayor.indicadores.wos-(cuartil)Q3
umayor.indicadores.scopus-(scimago-sjr)SCIMAGO/ INDICE H: 119 H
umayor.indicadores.scopus-(scimago-sjr)SJR 0.88


Vista simple de metadatos



Modificado por: Sistema de Bibliotecas Universidad Mayor - SIBUM
DSpace software copyright © 2002-2018  DuraSpace