Vista simple de metadatos

dc.contributorUniv Mayor, Fac Estudios Interdisciplinarios, Ctr Invest DAiTA Lab, Chilees
dc.contributor.authorMontalva-Medel, Marco
dc.contributor.authorRica, Sergio
dc.contributor.authorUrbina, Felipe [Univ Mayor, Fac Estudios Interdisciplinarios, DAiTA Lab, Chile]
dc.date.accessioned2022-04-06T21:05:12Z
dc.date.available2022-04-06T21:05:12Z
dc.date.issued2020-04
dc.identifier.citationMontalva-Medel, M., Rica, S., & Urbina, F. (2020). Phase space classification of an Ising cellular automaton: The Q2R model. Chaos, Solitons & Fractals, 133, 109618.es
dc.identifier.issn0960-0779
dc.identifier.issneISSN: 1873-2887
dc.identifier.otherWOS: 000520892300040
dc.identifier.urihttp://repositorio.umayor.cl/xmlui/handle/sibum/8433
dc.identifier.urihttps://arxiv.org/pdf/1903.11761.pdf
dc.identifier.urihttps://doi.org/10.1016/j.chaos.2020.109618
dc.identifier.urihttps://www.sciencedirect.com/science/article/abs/pii/S0960077920300175?via%3Dihub
dc.identifier.urihttps://repositorio.uai.cl/handle/20.500.12858/2818
dc.description.abstractAn exact classification of the different dynamical behaviors that exhibits the phase space of a reversible and conservative cellular automaton, the so-called Q2R model, is shown in this paper. Q2R is a cellular automaton which is a dynamical variation of the Ising model in statistical physics and whose space of configurations grows exponentially with the system size. As a consequence of the intrinsic reversibility of the model, the phase space is composed only by configurations that belong to a fixed point or a cycle. In this work, we classify them in four types accordingly to well differentiated topological characteristics. Three of them -which we call of type S-I, S-II, and S-III- share a symmetry property, while the fourth, which we call of type AS does not. Specifically, we prove that any configuration of Q2R belongs to one of the four previous types of cycles. Moreover, at a combinatorial level, we can determine the number of cycles for some small periods which are almost always present in the Q2R. Finally, we provide a general overview of the resulting decomposition of the arbitrary size Q2R phase space and, in addition, we realize an exhaustive study of a small Ising system (4 x 4) which is thoroughly analyzed under this new framework, and where simple mathematical tools are introduced in order to have a more direct understanding of the Q2R dynamics and to rediscover known properties like the energy conservation. (C) 2020 Elsevier Ltd. All rights reserved.es
dc.description.sponsorshipThe authors acknowledge the constructive comment and remarks by the anonymous referees. Work partially supported by FONDECYT Iniciacion 11150827and Programa Regional STIC-AmSud (CoDANet) cod. 19-STIC-03 (M.M-M.). S.R. thanks the Gaspard Monge Visiting Professor Program of Ecole Polytechnique (France). F.U. thanks FONDECYT (Chile) for financial support through Postdoctoral No. 3180227. Finally, the authors thank Fondequip AIC-34. Powered@NLHPC: This research was partially supported by the supercomputing infrastructure of the NLHPC (ECM-02).es
dc.format.extent24 p., PDFes
dc.language.isoenes
dc.publisherElsevier Ltd.es
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chilees
dc.titlePhase space classification of an Ising cellular automaton: The Q2R modeles
dc.typeArtículo o Paperes
umayor.indizadorCOTes
umayor.politicas.sherpa/romeoLicence CC BY-NC-ND 4.0. Disponible en: https://v2.sherpa.ac.uk/id/publication/28945es
umayor.indexadoWeb of Sciencees
umayor.indexadoRepositorio UAI
dc.identifier.doi10.1016/j.chaos.2020.109618
umayor.indicadores.wos-(cuartil)Q1
umayor.indicadores.scopus-(scimago-sjr)SCIMAGO/ INDICE H: 139 H
umayor.indicadores.scopus-(scimago-sjr)SJR 1.04


Vista simple de metadatos



Modificado por: Sistema de Bibliotecas Universidad Mayor - SIBUM
DSpace software copyright © 2002-2018  DuraSpace