Vista simple de metadatos

dc.contributorUniv Mayor, Fac Ciencias, Ctr Modelac & Monitoreo Ecosistemas, Chilees
dc.contributor.authorMorales, Narkis S. [Univ Mayor, Fac Ciencias, Ctr Modelac & Monitoreo Ecosistemas, Chile]
dc.contributor.authorFernández, Ignacio C. [Univ Mayor, Fac Ciencias, Ctr Modelac & Monitoreo Ecosistemas, Chile]
dc.date.accessioned2022-04-07T18:58:08Z
dc.date.available2022-04-07T18:58:08Z
dc.date.issued2020-03
dc.identifier.citationMorales, N. S., & Fernández, I. C. (2020). Land-Cover Classification Using MaxEnt: Can We Trust in Model Quality Metrics for Estimating Classification Accuracy?. Entropy, 22(3), 342.es
dc.identifier.issn1099-4300
dc.identifier.otherWOS: 000526524300002
dc.identifier.otherPMID: 33286116
dc.identifier.urihttp://repositorio.umayor.cl/xmlui/handle/sibum/8443
dc.identifier.urihttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7516803/pdf/entropy-22-00342.pdf
dc.identifier.urihttps://dx.doi.org/10.3390%2Fe22030342
dc.identifier.urihttps://www.mdpi.com/1099-4300/22/3/342/pdf
dc.description.abstractMaxEnt is a popular maximum entropy-based algorithm originally developed for modelling species distribution, but increasingly used for land-cover classification. In this article, we used MaxEnt as a single-class land-cover classification and explored if recommended procedures for generating high-quality species distribution models also apply for generating high-accuracy land-cover classification. We used remote sensing imagery and randomly selected ground-true points for four types of land covers (built, grass, deciduous, evergreen) to generate 1980 classification maps using MaxEnt. We calculated different accuracy discrimination and quality model metrics to determine if these metrics were suitable proxies for estimating the accuracy of land-cover classification outcomes. Correlation analysis between model quality metrics showed consistent patterns for the relationships between metrics, but not for all land-covers. Relationship between model quality metrics and land-cover classification accuracy were land-cover-dependent. While for built cover there was no consistent patterns of correlations for any quality metrics; for grass, evergreen and deciduous, there was a consistent association between quality metrics and classification accuracy. We recommend evaluating the accuracy of land-cover classification results by using proper discrimination accuracy coefficients (e.g., Kappa, Overall Accuracy), and not placing all the confidence in model's quality metrics as a reliable indicator of land-cover classification results.es
dc.format.extent9 p., PDFes
dc.language.isoenes
dc.publisherMDPI Multidisciplinary Digital Publishing Institutees
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chilees
dc.titleLand-Cover Classification Using MaxEnt: Can We Trust in Model Quality Metrics for Estimating Classification Accuracy?es
dc.typeArtículo o Paperes
umayor.indizadorCOTes
umayor.politicas.sherpa/romeoLicence CC BY 4.0. Disponible en: https://v2.sherpa.ac.uk/id/publication/24797es
umayor.indexadoWeb of Sciencees
umayor.indexadoDOAJes
umayor.indexadoPUBMEDes
dc.identifier.doi10.3390/e22030342
umayor.indicadores.wos-(cuartil)Q2
umayor.indicadores.scopus-(scimago-sjr)SCIMAGO/ INDICE H: 74 H
umayor.indicadores.scopus-(scimago-sjr)SJR 0.47


Vista simple de metadatos



Modificado por: Sistema de Bibliotecas Universidad Mayor - SIBUM
DSpace software copyright © 2002-2018  DuraSpace