Vista simple de metadatos

dc.contributorUniv Mayor, Fac Ciencias, DAiTA Lab, Chilees
dc.contributor.authorDíaz-Rodríguez, Pablo
dc.contributor.authorMuñoz, Francisco
dc.contributor.authorRogan, José
dc.contributor.authorMartin-Bragado, Ignacio
dc.contributor.authorPerlado, J. M.
dc.contributor.authorPeña-Rodríguez, Ovidio
dc.contributor.authorRivera, Antonio
dc.contributor.authorValencia, Felipe J. [Univ Mayor, Fac Ciencias, Ctr Invest DAiTA Lab, Chile]
dc.date.accessioned2022-04-08T18:57:47Z
dc.date.available2022-04-08T18:57:47Z
dc.date.issued2020-09
dc.identifier.citationDíaz-Rodríguez, P., Munoz, F., Rogan, J., Martín-Bragado, I., Perlado, J. M., Peña-Rodríguez, O., ... & Valencia, F. J. (2020). Highly porous tungsten for plasma-facing applications in nuclear fusion power plants: a computational analysis of hollow nanoparticles. Nuclear Fusion, 60(9), 096017.es
dc.identifier.issn0029-5515
dc.identifier.issneISSN: 1741-4326
dc.identifier.otherWOS: 000560441000001
dc.identifier.otherScopus: 2-s2.0-85094190785
dc.identifier.urihttp://repositorio.umayor.cl/xmlui/handle/sibum/8448
dc.identifier.urihttps://iopscience.iop.org/article/10.1088/1741-4326/aba092/pdf
dc.identifier.urihttps://repositorio.uchile.cl/handle/2250/177665
dc.description.abstractPlasma-facing materials (PFMs) for nuclear fusion, either in inertial confinement fusion (ICF) or in magnetic confinement fusion (MCF) approaches, must withstand extremely hostile irradiation conditions. Mitigation strategies are plausible in some cases, but usually the best, or even the only, solution for feasible plant designs is to rely on PFMs able to tolerate these irradiation conditions. Unfortunately, many studies report a lack of appropriate materials that have a good thermomechanical response and are not prone to deterioration by means of irradiation damage. The most deleterious effects are vacancy clustering and the retention of light species, as is the case for tungsten. In an attempt to find new radiation-resistant materials, we studied tungsten hollow nanoparticles under different irradiation scenarios that mimic ICF and MCF conditions. By means of classical molecular dynamics, we determined that these particles can resist astonishingly high temperatures (up to similar to 3000 K) and huge internal pressures (>5 GPa at 3000 K) before rupture. In addition, in the case of gentle pressure increase (ICF scenarios), a self-healing mechanism leads to the formation of an opening through which gas atoms are able to escape. The opening disappears as the pressure drops, restoring the original particle. Regarding radiation damage, object kinetic Monte Carlo simulations show an additional self-healing mechanism. At the temperatures of interest, defects (including clusters) easily reach the nanoparticle surface and disappear, which makes the hollow nanoparticles promising for ICF designs. The situation is less promising for MCF because the huge ion densities expected at the surface of PFMs lead to inevitable particle rupture.es
dc.description.sponsorshipThis work was supported by the Fondo Nacional de Investigaciones Cienteficas y Tecnologicas (FONDECYT, Chile) #1190662 (FV and JR), Financiamiento Basal para Centros Cienteficos y Tecnologicos de Excelencia FB-0807, AFB180001. Powered@NLHPC: This research was partially supported by the supercomputing infrastructure of the NLHPC (ECM-02). The research leading to these results has received funding from the Spanish MINECO project ENE2015-70300-C3-3-R, EUROfusion Consortium project AWP15-ENR-01/CEA-02 and Madrid Region project (II)-CM (S2018/EMT-4437). The authors acknowledge the computer resources and technical assistance provided by CESVIMA (UPM).es
dc.format.extent14 p., PDFes
dc.language.isoenes
dc.publisherIOP Publishing Ltd.es
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chilees
dc.titleHighly porous tungsten for plasma-facing applications in nuclear fusion power plants: a computational analysis of hollow nanoparticleses
dc.typeArtículo o Paperes
umayor.indizadorCOTes
umayor.politicas.sherpa/romeoLicence CC BY 3.0. Disponible en: https://v2.sherpa.ac.uk/id/publication/11311es
umayor.indexadoWeb of Sciencees
umayor.indexadoScopuses
umayor.indexadoRepositorio UCHILE
dc.identifier.doi10.1088/1741-4326/aba092
umayor.indicadores.wos-(cuartil)Q1
umayor.indicadores.scopus-(scimago-sjr)SCIMAGO/ INDICE H: 120 H
umayor.indicadores.scopus-(scimago-sjr)SJR 1.77


Vista simple de metadatos



Modificado por: Sistema de Bibliotecas Universidad Mayor - SIBUM
DSpace software copyright © 2002-2018  DuraSpace