Vista simple de metadatos

dc.contributorUniv Mayor, Fac Estudios Interdisciplinarios, Nucleo Matemat Fis & Estadist, Chilees
dc.contributor.authorAmigo, Nicolás [Univ Mayor, Fac Estudios Interdisciplinarios, Nucleo Matemat Fis & Estadist, Chile]
dc.date.accessioned2022-04-26T19:27:32Z
dc.date.available2022-04-26T19:27:32Z
dc.date.issued2020-09
dc.identifier.citationAmigo, N. (2020). Crystalline structure and grain boundary identification in nanocrystalline aluminum using K-means clustering. Modelling and Simulation in Materials Science and Engineering, 28(6), 065009.es
dc.identifier.issn0965-0393
dc.identifier.issneISSN: 1361-651X
dc.identifier.otherWOS: 000726453000001
dc.identifier.otherScopus: 2-s2.0-85089809559
dc.identifier.urihttp://repositorio.umayor.cl/xmlui/handle/sibum/8502
dc.identifier.urihttps://iopscience-iop-org.bibliotecadigital.umayor.cl:2443/article/10.1088/1361-651X/ab9dd9/pdf
dc.identifier.urihttps://ui.adsabs.harvard.edu/abs/2020MSMSE..28f5009A/abstract
dc.description.abstractK-means clustering was carried out to identify the atomic structure of nanocrystalline aluminum. For this purpose, per-atom physical quantities were calculated bymeans ofmolecular dynamics simulations, such as the potential energy, stress components, and atomic volume. Statistical analysis revealed that potential energy, atomic volume and von Mises stress were relevant parameters to distinguish between fcc atoms and grain boundary atoms. These three parameters were employed with the K-means algorithm to establish two clusters, one corresponding to fcc atoms and another to GB atoms. When comparing the K-means classification performance with that of CNA, an F-1 score of 0.969 and a Matthews correlation coefficient of 0.859 were achieved. This approach differs from other traditional methods in that the quantities employed here do not require input settings such as the number of nearest neighbor nor a cut-off value. Therefore, K-means clustering could be eventually used to inspect the atomic structure in more complex systems.es
dc.description.sponsorshipPowered@NLHPC: this researchwas partially supported by the supercomputing infrastructure of the NLHPC (ECM-02).es
dc.format.extent11 p., PDFes
dc.language.isoenes
dc.publisherIOP Publishing Ltd.es
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chilees
dc.titleCrystalline structure and grain boundary identification in nanocrystalline aluminum using K-means clusteringes
dc.typeArtículo o Paperes
umayor.indizadorCOTes
umayor.politicas.sherpa/romeoLicence CC BY 3.0. Disponible en: https://v2.sherpa.ac.uk/id/publication/11332es
umayor.indexadoWeb of Sciencees
umayor.indexadoScopuses
dc.identifier.doi10.1088/1361-651X/ab9dd9
umayor.indicadores.wos-(cuartil)Q3
umayor.indicadores.scopus-(scimago-sjr)SCIMAGO/ INDICE H: 82 H
umayor.indicadores.scopus-(scimago-sjr)SJR 0.69


Vista simple de metadatos



Modificado por: Sistema de Bibliotecas Universidad Mayor - SIBUM
DSpace software copyright © 2002-2018  DuraSpace