Vista simple de metadatos

dc.contributorUniv Mayor, Fac Estudios Interdisciplinarios, Ctr Invest DAiTA Lab, Chilees
dc.contributor.authorFanchini, Felipe F.
dc.contributor.authorKarpat, Goktug
dc.contributor.authorRossatto, Daniel Z.
dc.contributor.authorNorambuena, Ariel [Univ Mayor, Fac Estudios Interdisciplinarios, Ctr Invest DAiTA Lab, Chile]
dc.contributor.authorCoto, Raúl [Univ Mayor, Fac Estudios Interdisciplinarios, Ctr Invest DAiTA Lab, Chile]
dc.date.accessioned2023-12-22T23:18:39Z
dc.date.available2023-12-22T23:18:39Z
dc.date.issued2021-02-24
dc.identifier.citationFanchini, F. F., Karpat, G., Rossatto, D. Z., Norambuena, A., & Coto, R. (2021). Estimating the degree of non-Markovianity using machine learning. Physical Review A, 103(2), 022425.es
dc.identifier.issn2469-9926
dc.identifier.issneISSN 2469-9934
dc.identifier.otherWOS: 000621216900003
dc.identifier.urihttps://repositorio.umayor.cl/xmlui/handle/sibum/9155
dc.identifier.urihttps://arxiv.org/pdf/2009.03946.pdf
dc.identifier.urihttps://journals-aps-org.bibliotecadigital.umayor.cl:2443/pra/pdf/10.1103/PhysRevA.103.022425
dc.identifier.urihttps://doi.org/10.1103/PhysRevA.103.022425
dc.description.abstractIn the last few years, the application of machine learning methods has become increasingly relevant in different fields of physics. One of the most significant subjects in the theory of open quantum systems is the study of the characterization of non-Markovian memory effects that emerge dynamically throughout the time evolution of open systems as they interact with their surrounding environment. Here we consider two well-established quantifiers of the degree of memory effects, namely, the trace distance and the entanglement-based measures of non-Markovianity. We demonstrate that using machine learning techniques, in particular, support vector machine algorithms, it is possible to estimate the degree of non-Markovianity in two paradigmatic open system models with high precision. Our approach can be experimentally feasible to estimate the degree of non-Markovianity, since it requires a single or at most two rounds of state tomography.es
dc.description.sponsorshipF.F.F. acknowledges support from Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP), Project No. 2019/05445-7. G.K. is supported by the BAGEP Award of the Science Academy, the TUBA-GEBIP Award of the Turkish Academy of Sciences, and by the Technological Research Council of Turkey (TUBITAK) under Grant No. 117F317. A.N. acknowledges support from Universidad Mayor through the Postdoctoral fellowship. R.C. acknowledges support from Fondecyt Iniciacion No. 11180143.es
dc.format.extent14 p., PDFes
dc.language.isoen_USes
dc.publisherAMER PHYSICAL SOCes
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chilees
dc.titleEstimating the degree of non-Markovianity using machine learninges
dc.typeArtículo o Paperes
umayor.indizadorCOTes
umayor.indexadoWeb of Sciencees
dc.identifier.doi10.1103/PhysRevA.103.022425
umayor.indicadores.wos-(cuartil)Q2
umayor.indicadores.scopus-(scimago-sjr)SCIMAGO/ INDICE H: 281
umayor.indicadores.scopus-(scimago-sjr)SJR 1,11


Vista simple de metadatos



Modificado por: Sistema de Bibliotecas Universidad Mayor - SIBUM
DSpace software copyright © 2002-2018  DuraSpace