| dc.contributor | Univ Mayor, Fac Estudios Interdisciplinarios, Ctr Invest DAiTA Lab, Chile | es |
| dc.contributor.author | Fanchini, Felipe F. | |
| dc.contributor.author | Karpat, Goktug | |
| dc.contributor.author | Rossatto, Daniel Z. | |
| dc.contributor.author | Norambuena, Ariel [Univ Mayor, Fac Estudios Interdisciplinarios, Ctr Invest DAiTA Lab, Chile] | |
| dc.contributor.author | Coto, Raúl [Univ Mayor, Fac Estudios Interdisciplinarios, Ctr Invest DAiTA Lab, Chile] | |
| dc.date.accessioned | 2023-12-22T23:18:39Z | |
| dc.date.available | 2023-12-22T23:18:39Z | |
| dc.date.issued | 2021-02-24 | |
| dc.identifier.citation | Fanchini, F. F., Karpat, G., Rossatto, D. Z., Norambuena, A., & Coto, R. (2021). Estimating the degree of non-Markovianity using machine learning. Physical Review A, 103(2), 022425. | es |
| dc.identifier.issn | 2469-9926 | |
| dc.identifier.issn | eISSN 2469-9934 | |
| dc.identifier.other | WOS: 000621216900003 | |
| dc.identifier.uri | https://repositorio.umayor.cl/xmlui/handle/sibum/9155 | |
| dc.identifier.uri | https://arxiv.org/pdf/2009.03946.pdf | |
| dc.identifier.uri | https://journals-aps-org.bibliotecadigital.umayor.cl:2443/pra/pdf/10.1103/PhysRevA.103.022425 | |
| dc.identifier.uri | https://doi.org/10.1103/PhysRevA.103.022425 | |
| dc.description.abstract | In the last few years, the application of machine learning methods has become increasingly relevant in different fields of physics. One of the most significant subjects in the theory of open quantum systems is the study of the characterization of non-Markovian memory effects that emerge dynamically throughout the time evolution of open systems as they interact with their surrounding environment. Here we consider two well-established quantifiers of the degree of memory effects, namely, the trace distance and the entanglement-based measures of non-Markovianity. We demonstrate that using machine learning techniques, in particular, support vector machine algorithms, it is possible to estimate the degree of non-Markovianity in two paradigmatic open system models with high precision. Our approach can be experimentally feasible to estimate the degree of non-Markovianity, since it requires a single or at most two rounds of state tomography. | es |
| dc.description.sponsorship | F.F.F. acknowledges support from Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP), Project No. 2019/05445-7. G.K. is supported by the BAGEP Award of the Science Academy, the TUBA-GEBIP Award of the Turkish Academy of Sciences, and by the Technological Research Council of Turkey (TUBITAK) under Grant No. 117F317. A.N. acknowledges support from Universidad Mayor through the Postdoctoral fellowship. R.C. acknowledges support from Fondecyt Iniciacion No. 11180143. | es |
| dc.format.extent | 14 p., PDF | es |
| dc.language.iso | en_US | es |
| dc.publisher | AMER PHYSICAL SOC | es |
| dc.rights | Attribution-NonCommercial-NoDerivs 3.0 Chile | es |
| dc.title | Estimating the degree of non-Markovianity using machine learning | es |
| dc.type | Artículo o Paper | es |
| umayor.indizador | COT | es |
| umayor.indexado | Web of Science | es |
| dc.identifier.doi | 10.1103/PhysRevA.103.022425 | |
| umayor.indicadores.wos-(cuartil) | Q2 | |
| umayor.indicadores.scopus-(scimago-sjr) | SCIMAGO/ INDICE H: 281 | |
| umayor.indicadores.scopus-(scimago-sjr) | SJR 1,11 | |