Vista simple de metadatos

dc.contributorUniv Mayor, Escuela Ingn Ind, Fac Ciencias Ingn & Tecnol, Chilees
dc.contributor.authorAmigo, Nicolás
dc.contributor.authorPalominos, Simón [Univ Mayor, Escuela Ingn Ind, Fac Ciencias Ingn & Tecnol, Chile]
dc.contributor.authorValencia, Felipe J.
dc.date.accessioned2024-03-22T21:36:34Z
dc.date.available2024-03-22T21:36:34Z
dc.date.issued2023-01-07
dc.identifier.citationAmigo, N., Palominos, S., & Valencia, F. J. (2023). Machine learning modeling for the prediction of plastic properties in metallic glasses. Scientific Reports, 13(1), 348.es
dc.identifier.issn2045-2322
dc.identifier.otherWOS:000984279900021
dc.identifier.otherPMID: 36611063
dc.identifier.otherSCOPUS_ID:85145824925
dc.identifier.urihttps://repositorio.umayor.cl/xmlui/handle/sibum/9502
dc.identifier.urihttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9825623/pdf/41598_2023_Article_27644.pdf
dc.identifier.urihttps://doi.org/10.1038%2Fs41598-023-27644-x
dc.identifier.urihttps://www-nature-com.bibliotecadigital.umayor.cl:2443/articles/s41598-023-27644-x.pdf
dc.identifier.urihttps://www.nature.com/articles/s41598-023-27644-x.pdf
dc.description.abstractMetallic glasses are one of the most interesting mechanical materials studied in the last years, but as amorphous solids, they differ strongly from their crystalline counterparts. This matter can be addressed with the development and application of predictive techniques capable to describe the plastic regime. Here, machine learning models were employed for the prediction of plastic properties in CuZr metallic glasses. To this aim, 100 different samples were subjected to tensile tests by means of molecular dynamics simulations. A total of 17 materials properties were calculated and explored using statistical analysis. Strong correlations were found for stoichiometry, temperature, structural, and elastic properties with plastic properties. Three regression models were employed for the prediction of six plastic properties. Linear and Ridge regressions delivered the better prediction capability, with coefficients of determination above similar to 80% for three plastic properties, whereas Lasso regression rendered lower performance, with coefficients of determination above similar to 60% for two plastic properties. Overall, our work shows that molecular dynamics simulations together with machine learning models can provide a framework for the prediction of plastic behavior of complex materials.es
dc.description.sponsorshipAuthors thanks the Fondo Nacional de Desarrollo Cientifico y Tecnologico (FONDECYT, Chile) under grants #11200038 (NA), #1190662 and #11190484 (FV). FV thanks the Financiamiento Basal para Centros Cientificos y Tecnologicos de Excelencia AFB180001 and AFB220001. Powered@NLHPC: This research was partially supported by the supercomputing infrastructure of the NLHPC (ECM-02).es
dc.format.extent10 p., PDFes
dc.language.isoen_USes
dc.publisherNATURE PORTFOLIOes
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chilees
dc.titleMachine learning modeling for the prediction of plastic properties in metallic glasseses
dc.typeArtículo o Paperes
umayor.indizadorCOTes
umayor.indexadoWeb of Sciencees
umayor.indexadoScopuses
umayor.indexadoPUBMEDes
dc.identifier.doi10.1038/s41598-023-27644-x
umayor.indicadores.wos-(cuartil)Q1
umayor.indicadores.scopus-(scimago-sjr)SCIMAGO/ INDICE H: 282
umayor.indicadores.scopus-(scimago-sjr)SJR 0,97


Vista simple de metadatos



Modificado por: Sistema de Bibliotecas Universidad Mayor - SIBUM
DSpace software copyright © 2002-2018  DuraSpace