Vista simple de metadatos

dc.contributorUniv Mayor, Ctr Nanotecnol Aplicada, Chilees
dc.contributor.authorAlabd Alhafez, Iyad
dc.contributor.authorDeluigi, Orlando R.
dc.contributor.authorTramontina, Diego
dc.contributor.authorRuestes, Carlos J.
dc.contributor.authorBringa, Eduardo M. [Univ Mayor, Ctr Nanotecnol Aplicada, Chile]
dc.contributor.authorUrbassek, Herbert M.
dc.date.accessioned2024-03-22T23:05:44Z
dc.date.available2024-03-22T23:05:44Z
dc.date.issued2023-06-16
dc.identifier.citationAlhafez, I. A., Deluigi, O. R., Tramontina, D., Ruestes, C. J., Bringa, E. M., & Urbassek, H. M. (2023). Simulated nanoindentation into single-phase fcc Fe [... formula...] Ni [... formula...] alloys predicts maximum hardness for equiatomic stoichiometry. Scientific Reports, 13.es
dc.identifier.issn2045-2322
dc.identifier.otherWOS:001044376300047
dc.identifier.otherPMID: 37328557
dc.identifier.otherSCOPUS_ID:85162168607
dc.identifier.urihttps://repositorio.umayor.cl/xmlui/handle/sibum/9506
dc.identifier.urihttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10275991/pdf/41598_2023_Article_36899.pdf
dc.identifier.urihttps://doi.org/10.1038%2Fs41598-023-36899-3
dc.identifier.urihttps://www-nature-com.bibliotecadigital.umayor.cl:2443/articles/s41598-023-36899-3.pdf
dc.identifier.urihttps://europepmc.org/article/pmc/pmc10275991
dc.description.abstractWe investigate by molecular dynamics simulation the mechanical behavior of concentrated alloys under nanoindentation for the special example of single-phase fcc FexNi1-x alloys. The indentation hardness is maximum for the equiatomic alloy, x=0.5. This finding is in agreement with experimental results on the strength of these alloys under uniaxial strain. We explain this finding with the increase of the unstable stacking fault energy in the alloys towards x=0.5. With increasing Fe content, loop emission from the plastic zone under the indenter becomes less pronounced and the plastic zone features a larger fraction of screw dislocation segments; simultaneously, the length of the dislocation network and the number of atoms in the stacking faults generated in the plastic zone increase. However, the volume of twinned regions in the plastic zone is highest for the elemental solids and decreases for the alloys. This feature is explained by the fact that twinning proceeds by the glide of dislocations on adjacent parallel lattice planes; this concerted motion is less efficient in the alloys. Finally, we find that surface imprints show increasing pile-up heights with increasing Fe content. The present results will be of interest for hardness engineering or generating hardness profiles in concentrated alloys.es
dc.description.sponsorshipOpen Access funding enabled and organized by Projekt DEAL. IAA and HMU acknowledge support by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)-project number 172116086-SFB 926. IAA also appreciates the financial support from Simulation Science Center Clausthal/Gottingen and the German Research Foundation (DFG) under contract GU1530/11-1, SPP 2315. ORD, DT and EMB thank support from PICTO-UUMM-2019-00048, PIP 2021-2023 11220200102578CO and SIIP-UNCUYO 06/M008-T1.es
dc.format.extent14 p., PDFes
dc.language.isoen_USes
dc.publisherNATURE PORTFOLIOes
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chilees
dc.titleSimulated nanoindentation into single-phase fcc FexNi1-x alloys predicts maximum hardness for equiatomic stoichiometryes
dc.typeArtículo o Paperes
umayor.indizadorCOTes
umayor.indexadoWeb of Sciencees
umayor.indexadoScopuses
umayor.indexadoPUBMEDes
dc.identifier.doi10.1038/s41598-023-36899-3
umayor.indicadores.wos-(cuartil)Q1
umayor.indicadores.scopus-(scimago-sjr)SCIMAGO/ INDICE H: 282
umayor.indicadores.scopus-(scimago-sjr)SJR 0,97


Vista simple de metadatos



Modificado por: Sistema de Bibliotecas Universidad Mayor - SIBUM
DSpace software copyright © 2002-2018  DuraSpace