Vista simple de metadatos

dc.contributorAMERICAN CHEMICAL SOCIETYes_CL
dc.contributor.authorTang, Xiaoyu [Estados Unidos. University of California. Institution of Oceanography]es_CL
dc.contributor.authorLi, Jie [Estados Unidos. University of California San Diego. Scripps Institution of Oceanography]es_CL
dc.contributor.authorMillan-Aguinaga, Natalie [Estados Unidos. University of California San Diego. Scripps Institution of Oceanography]es_CL
dc.contributor.authorZhang, Jia Jia [Estados Unidos. University of California San Diego. Scripps Institution of Oceanography]es_CL
dc.contributor.authorO'Neill, Ellis C. [Estados Unidos. University of California. Scripps Institution of Oceanography]es_CL
dc.contributor.authorUgalde, Juan A [Chile. Universidad Mayor Facultad de Ciencias]es_CL
dc.contributor.authorJensen, Paul R [Estados Unidos. University of California San Diego. Scripps Institution of Oceanography]es_CL
dc.contributor.authorMantovani, Simone M. [Estados Unidos. University of California. Scripps Institution of Oceanography]es_CL
dc.contributor.authorMoore, Bradley S. [Estados Unidos. University of California San Diego. Scripps Institution of Oceanography]es_CL
dc.date.accessioned2018-09-07T13:04:10Z
dc.date.available2018-09-07T13:04:10Z
dc.date.issued2015es_CL
dc.identifier.citationTang, X. Y., Li, J., Millan-Aguinaga, N., Zhang, J. J., O'Neill, E. C., Ugalde, J. A., . . . Moore, B. S. (2015). Identification of Thiotetronic Acid Antibiotic Biosynthetic Pathways by Target-directed Genome Mining. Acs Chemical Biology, 10(12), 2841-2849. doi:10.1021/acschembio.5b00658es_CL
dc.identifier.issnISSN 1554-8929es_CL
dc.identifier.issnESSN 1554-8937es_CL
dc.identifier.urihttps://pubs.acs.org/doi/ipdf/10.1021/acschembio.5b00658es_CL
dc.identifier.urihttps://doi.org/10.1021/acschembio.5b00658es_CL
dc.identifier.urihttp://repositorio.umayor.cl/xmlui/handle/sibum/2616
dc.description.abstractRecent genome sequencing efforts have led to the rapid accumulation of uncharacterized or "orphaned" secondary metabolic biosynthesis gene clusters (BGCs) in public databases. This increase in DNA-sequenced big data has given rise to significant challenges in the applied field of natural product genome mining, including (i) how to prioritize the characterization of orphan BGCs and (ii) how to rapidly connect genes to biosynthesized small molecules. Here, we show that by correlating putative antibiotic resistance genes that encode target-modified proteins with orphan BGCs, we predict the biological function of pathway specific small molecules before they have been revealed in a process we call target-directed genome mining. By querying the pan-genome of 86 Salinispora bacterial genomes for duplicated house-keeping genes colocalized with natural product BGCs, we prioritized an orphan polyketide synthase-nonribosomal peptide synthetase hybrid BGC (tlm) with a putative fatty acid synthase resistance gene. We employed a new synthetic double-stranded DNA-mediated cloning strategy based on transformation-associated recombination to efficiently capture tlm and the related Mu BGCs directly from genomic DNA and to heterologously express them in Streptomyces hosts. We show the production of a group of unusual thiotetronic acid natural products, including the well-known fatty acid synthase inhibitor thiolactomycin that was first described over 30 years ago, yet never at the genetic level in regards to biosynthesis and autoresistance. This finding not only validates the target-directed genome mining strategy for the discovery of antibiotic producing gene clusters without a priori knowledge of the molecule synthesized but also paves the way for the investigation of novel: enzymology involved in thiotetronic, acid natural product biosynthesis.es_CL
dc.description.sponsorshipEste trabajo fue financiado por: U.S. National Institutes of Health grants R01-GM085770, U19-TW007401, Roddenberry Foundation; Fondecyt Grant 11140666; CONACyT-213497.es_CL
dc.format.extentARTÍCULO ORIGINALes_CL
dc.language.isoenes_CL
dc.publisherCIENCIASes_CL
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chilees_CL
dc.subjectBIOQUÍMICAes_CL
dc.titleIdentification of Thiotetronic Acid Antibiotic Biosynthetic Pathways by Target-directed Genome Mininges_CL
dc.typeArtículo o Paperes_CL
umayor.indizadorCOTes_CL
umayor.politicas.sherpa/romeoLicencia color: BLANCO (El archivo no está formalmente admitido)--Preprint: el autor puede archivar la versión pre-print (ie la versión previa a la revisión por pares) siempre que se cumplan las restricciones: Must obtain written permission from Editor, No debe infringir las directrices éticas de ACS. Post-print del autor: el autor puede archivar la versión post-print (ie la versión final posterior a la revisión por pares) siempre que se cumplan las restricciones: Si es mandatorio por parte del organismo de financiación o empleador/institución, 12 meses de embargo. Versión de editor/PDF: el autor no puede archivar la versión del editor/PDF, Condiciones generales: On author's personal website, pre-print servers, institutional website, institutional repositories or subject repositories, No comercial, Debe acompañarse de la declaración establecida (ver política), Debe ir enlazado a la versión de editor, La versión de editor/PDF no puede utilizarse// Disponible en: http://www.sherpa.ac.uk/romeo/issn/1554-8929/es/es_CL
umayor.indexadoWOSes_CL
umayor.indexadoSCOPUSes_CL
dc.identifier.doi10.1021/acschembio.5b00658es_CL]
umayor.indicadores.wos-(cuartil)Q1es_CL
umayor.indicadores.scopus-(scimago-sjr)sin informaciónes_CL


Vista simple de metadatos



Modificado por: Sistema de Bibliotecas Universidad Mayor - SIBUM
DSpace software copyright © 2002-2018  DuraSpace