Vista simple de metadatos

dc.contributorHumana Presses
dc.contributor.authorBustos, Álvaro
dc.contributor.authorFuenzalida, Ignacio
dc.contributor.authorSantibáñez, Rodrigo
dc.contributor.authorPérez-Acle, Tomás
dc.contributor.authorMartin, Alberto J M [Centro de Genómica y Bioinformática, Facultad de Ciencias, Universidad Mayor, Chile]
dc.date.accessioned2020-12-18T20:44:48Z
dc.date.available2020-12-18T20:44:48Z
dc.date.issued2018-11-13
dc.identifier.citationBustos Á., Fuenzalida I., Santibáñez R., Pérez-Acle T., Martin A.J.M. (2018) Rule-Based Models and Applications in Biology. In: von Stechow L., Santos Delgado A. (eds) Computational Cell Biology. Methods in Molecular Biology, vol 1819. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8618-7_1es
dc.identifier.isbn9781493986187
dc.identifier.isbn9781493986170
dc.identifier.urihttp://repositorio.umayor.cl/xmlui/handle/sibum/7276
dc.identifier.urihttps://pubmed.ncbi.nlm.nih.gov/30421397/
dc.identifier.urihttps://doi.org/10.1007/978-1-4939-8618-7_1
dc.identifier.urihttps://link.springer.com/protocol/10.1007/978-1-4939-8618-7_1#citeas
dc.identifier.urihttps://cgb.umayor.cl/publicaciones/rule-based-models-and-applications-in-biology
dc.description.abstractComplex systems are governed by dynamic processes whose underlying causal rules are difficult to unravel. However, chemical reactions, molecular interactions, and many other complex systems can be usually represented as concentrations or quantities that vary over time, which provides a framework to study these dynamic relationships. An increasing number of tools use these quantifications to simulate dynamically complex systems to better understand their underlying processes. The application of such methods covers several research areas from biology and chemistry to ecology and even social sciences. In the following chapter, we introduce the concept of rule-based simulations based on the Stochastic Simulation Algorithm (SSA) as well as other mathematical methods such as Ordinary Differential Equations (ODE) models to describe agent-based systems. Besides, we describe the mathematical framework behind Kappa (κ), a rule-based language for the modeling of complex systems, and some extensions for spaßtial models implemented in PISKaS (Parallel Implementation of a Spatial Kappa Simulator). To facilitate the understanding of these methods, we include examples of how these models can be used to describe population dynamics in a simple predator–prey ecosystem or to simulate circadian rhythm changes.es
dc.description.sponsorshipThe authors would like to kindly acknowledge the financial support received from FONDECYT Inicio 11140342 and award numbers FA9550-16-1-0111 and FA9550-16-1-0384 of the USA Air Force Office of Scientific Research. This research was partially supported by the supercomputing infrastructure of the Chilean NLHPC [ECM-02]. Basal Funding Program from CONICYT PFB-16 to Fundacion Ciencia & Vida and Instituto Milenio Centro Interdisciplinario de Neurociencia de Valparaiso CINV ICM-Economia [P09-022-F].es
dc.format.extent30 p., PDFes
dc.language.isoenes
dc.publisherHumana Presses
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chilees
dc.titleRule-Based Models and Applications in Biologyes
dc.typeArtículo o Paperes
umayor.indizadorCOTes
umayor.politicas.sherpa/romeoEsta obra está protegida bajo licencia de copyrightes
umayor.indexadoScopus
dc.identifier.doi10.1007/978-1-4939-8618-7_1


Vista simple de metadatos



Modificado por: Sistema de Bibliotecas Universidad Mayor - SIBUM
DSpace software copyright © 2002-2018  DuraSpace