FoamExplorer: Automated measurement of ligaments and voids for atomistic systems
Fecha
2020-12Autor
Aparicio, Emiliano
Millan, Emmanuel N.
Ruestes, Carlos J.
Bringa, Eduardo M. [Univ Mayor, Fac Ciencias, Ctr Nanotecnol Aplicada, Chile]
Ubicación geográfica
Notas
HERRAMIENTAS
Resumen
Atomistic simulations are often used to explore the mechanical and chemical properties of a variety of materials and structures, such as nanowires, whiskers, nanospheres, nanotrusses, and nanoscale foams, among others. Properties derived from such simulations often rely on an adequate determination of certain characteristic dimensions, which for the case of nanoporous foams include average ligament diameter and average void diameter. In principle, a given atomistic configuration contains all the necessary information to measure such important dimensions, but they are difficult to obtain in practice. We present an automated, open-source digital analysis software that can be used to study three-dimensional atomistic samples, regardless of their topological structure or degree of crystallinity. In this paper, we introduce a code than can systematically analyze atomistic samples and extract quantitative information for average ligament and void sizes, together with their distribution. We describe the software and test it on a set of samples, including highly symmetric topologies, and a non-symmetric nanoporous metal sample. Both crystalline and amorphous structures are measured. The code is highly efficient and can provide void and ligament size distributions for samples with tens of millions of atoms in minutes.
URI
http://repositorio.umayor.cl/xmlui/handle/sibum/8417https://doi.org/10.1016/j.commatsci.2020.109942
https://www.sciencedirect.com/science/article/abs/pii/S092702562030433X?via%3Dihub
Coleccion/es a la/s que pertenece:
Si usted es autor(a) de este documento y NO desea que su publicación tenga acceso público en este repositorio, por favor complete el formulario aquí.