High-accuracy detection of supraspinatus fatty infiltration in shoulder MRI using convolutional neural network algorithms
Fecha
2023-05-25Autor
Saavedra, Juan Pablo
Droppelmann, Guillermo
García, Nicolas
Jorquera, Carlos [Univ Mayor, Escuela Nutr & Dietet, Fac Ciencias, Santiago, Chile]
Feijoo, Felipe
Ubicación geográfica
Notas
HERRAMIENTAS
Resumen
BackgroundThe supraspinatus muscle fatty infiltration (SMFI) is a crucial MRI shoulder finding to determine the patient's prognosis. Clinicians have used the Goutallier classification to diagnose it. Deep learning algorithms have been demonstrated to have higher accuracy than traditional methods. AimTo train convolutional neural network models to categorize the SMFI as a binary diagnosis based on Goutallier's classification using shoulder MRIs. MethodsA retrospective study was performed. MRI and medical records from patients with SMFI diagnosis from January 1st, 2019, to September 20th, 2020, were selected. 900 T2-weighted, Y-view shoulder MRIs were evaluated. The supraspinatus fossa was automatically cropped using segmentation masks. A balancing technique was implemented. Five binary classification classes were developed into two as follows, A: 0, 1 v/s 3, 4; B: 0, 1 v/s 2, 3, 4; C: 0, 1 v/s 2; D: 0, 1, 2, v/s 3, 4; E: 2 v/s 3, 4. The VGG-19, ResNet-50, and Inception-v3 architectures were trained as backbone classifiers. An average of three 10-fold cross-validation processes were developed to evaluate model performance. AU-ROC, sensitivity, and specificity with 95% confidence intervals were used. ResultsOverall, 606 shoulders MRIs were analyzed. The Goutallier distribution was presented as follows: 0 = 403; 1 = 114; 2 = 51; 3 = 24; 4 = 14. Case A, VGG-19 model demonstrated an AU-ROC of 0.991 +/- 0.003 (accuracy, 0.973 +/- 0.006; sensitivity, 0.947 +/- 0.039; specificity, 0.975 +/- 0.006). B, VGG-19, 0.961 +/- 0.013 (0.925 +/- 0.010; 0.847 +/- 0.041; 0.939 +/- 0.011). C, VGG-19, 0.935 +/- 0.022 (0.900 +/- 0.015; 0.750 +/- 0.078; 0.914 +/- 0.014). D, VGG-19, 0.977 +/- 0.007 (0.942 +/- 0.012; 0.925 +/- 0.056; 0.942 +/- 0.013). E, VGG-19, 0.861 +/- 0.050 (0.779 +/- 0.054; 0.706 +/- 0.088; 0.831 +/- 0.061). ConclusionConvolutional neural network models demonstrated high accuracy in MRIs SMFI diagnosis.
URI
https://repositorio.umayor.cl/xmlui/handle/sibum/9525https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10248442/pdf/fmed-10-1070499.pdf
https://doi.org/10.3389%2Ffmed.2023.1070499
https://www.frontiersin.org/articles/10.3389/fmed.2023.1070499/pdf?isPublishedV2=False
Coleccion/es a la/s que pertenece:
Si usted es autor(a) de este documento y NO desea que su publicación tenga acceso público en este repositorio, por favor complete el formulario aquí.