Vista simple de metadatos

dc.contributorUniv Mayor, Escuela Nutr & Dietet, Fac Ciencias, Chilees
dc.contributor.authorSaavedra, Juan Pablo
dc.contributor.authorDroppelmann, Guillermo
dc.contributor.authorGarcía, Nicolas
dc.contributor.authorJorquera, Carlos [Univ Mayor, Escuela Nutr & Dietet, Fac Ciencias, Santiago, Chile]
dc.contributor.authorFeijoo, Felipe
dc.date.accessioned2024-03-27T22:19:06Z
dc.date.available2024-03-27T22:19:06Z
dc.date.issued2023-05-25
dc.identifier.citationSaavedra, J. P., Droppelmann, G., García, N., Jorquera, C., & Feijoo, F. (2023). High-accuracy detection of supraspinatus fatty infiltration in shoulder MRI using convolutional neural network algorithms. Frontiers in Medicine, 10, 1070499.es
dc.identifier.issn2296-858X
dc.identifier.otherWOS:001002738500001
dc.identifier.otherPMID: 37305126
dc.identifier.otherSCOPUS_ID:85161396228
dc.identifier.urihttps://repositorio.umayor.cl/xmlui/handle/sibum/9525
dc.identifier.urihttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10248442/pdf/fmed-10-1070499.pdf
dc.identifier.urihttps://doi.org/10.3389%2Ffmed.2023.1070499
dc.identifier.urihttps://www.frontiersin.org/articles/10.3389/fmed.2023.1070499/pdf?isPublishedV2=False
dc.description.abstractBackgroundThe supraspinatus muscle fatty infiltration (SMFI) is a crucial MRI shoulder finding to determine the patient's prognosis. Clinicians have used the Goutallier classification to diagnose it. Deep learning algorithms have been demonstrated to have higher accuracy than traditional methods. AimTo train convolutional neural network models to categorize the SMFI as a binary diagnosis based on Goutallier's classification using shoulder MRIs. MethodsA retrospective study was performed. MRI and medical records from patients with SMFI diagnosis from January 1st, 2019, to September 20th, 2020, were selected. 900 T2-weighted, Y-view shoulder MRIs were evaluated. The supraspinatus fossa was automatically cropped using segmentation masks. A balancing technique was implemented. Five binary classification classes were developed into two as follows, A: 0, 1 v/s 3, 4; B: 0, 1 v/s 2, 3, 4; C: 0, 1 v/s 2; D: 0, 1, 2, v/s 3, 4; E: 2 v/s 3, 4. The VGG-19, ResNet-50, and Inception-v3 architectures were trained as backbone classifiers. An average of three 10-fold cross-validation processes were developed to evaluate model performance. AU-ROC, sensitivity, and specificity with 95% confidence intervals were used. ResultsOverall, 606 shoulders MRIs were analyzed. The Goutallier distribution was presented as follows: 0 = 403; 1 = 114; 2 = 51; 3 = 24; 4 = 14. Case A, VGG-19 model demonstrated an AU-ROC of 0.991 +/- 0.003 (accuracy, 0.973 +/- 0.006; sensitivity, 0.947 +/- 0.039; specificity, 0.975 +/- 0.006). B, VGG-19, 0.961 +/- 0.013 (0.925 +/- 0.010; 0.847 +/- 0.041; 0.939 +/- 0.011). C, VGG-19, 0.935 +/- 0.022 (0.900 +/- 0.015; 0.750 +/- 0.078; 0.914 +/- 0.014). D, VGG-19, 0.977 +/- 0.007 (0.942 +/- 0.012; 0.925 +/- 0.056; 0.942 +/- 0.013). E, VGG-19, 0.861 +/- 0.050 (0.779 +/- 0.054; 0.706 +/- 0.088; 0.831 +/- 0.061). ConclusionConvolutional neural network models demonstrated high accuracy in MRIs SMFI diagnosis.es
dc.format.extent12 p., PDFes
dc.language.isoen_USes
dc.publisherFRONTIERS MEDIA SAes
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chilees
dc.titleHigh-accuracy detection of supraspinatus fatty infiltration in shoulder MRI using convolutional neural network algorithmses
dc.typeArtículo o Paperes
umayor.indizadorCOTes
umayor.indexadoWeb of Sciencees
umayor.indexadoScopuses
umayor.indexadoPUBMEDes
dc.identifier.doi10.3389/fmed.2023.1070499
umayor.indicadores.wos-(cuartil)Q2
umayor.indicadores.scopus-(scimago-sjr)SJR 0,93
umayor.indicadores.scopus-(scimago-sjr)SCIMAGO/ INDICE H: 71


Vista simple de metadatos



Modificado por: Sistema de Bibliotecas Universidad Mayor - SIBUM
DSpace software copyright © 2002-2018  DuraSpace