• Login
    View Item 
    •   DSpace Home
    • INVESTIGACIÓN
    • Artículos WOS
    • View Item
    •   DSpace Home
    • INVESTIGACIÓN
    • Artículos WOS
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    El Repositorio Institucional de la Universidad Mayor, tiene como objetivo publicar, en formato digital, todos los objetos derivados de su producción científica, académica, cultural y artística. En palabras simples es una vitrina que pone en valor su patrimonio documental.


    InformaciónInicioAcerca deFormulariosManuales

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    xmlui.EPerson.Navigation.loginxmlui.EPerson.Navigation.register

    Identification of Modules With Similar Gene Regulation and Metabolic Functions Based on Co-expression Data

    Thumbnail
    Date
    2019
    Author

    Pérez-Rueda, Ernesto [Univ Mayor, Fac Ciencias, Ctr Genom & Bioinformat, Santiago, Chile]

    Galán-Vásquez, Edgardo

    Geographic location

    Note
    Tools
    Cite
    Vea como citar este artículo

    Show full item record
    Abstract
    Biological systems respond to environmental perturbations and to a large diversity of compounds through gene interactions, and these genetic factors comprise complex networks. In particular, a wide variety of gene co-expression networks have been constructed in recent years thanks to the dramatic increase of experimental information obtained with techniques, such as microarrays and RNA sequencing. These networks allow the identification of groups of co-expressed genes that can function in the same process and, in turn, these networks may be related to biological functions of industrial, medical and academic interest. In this study, gene co-expression networks for 17 bacterial organisms from the COLOMBOS database were analyzed via weighted gene co-expression network analysis and clustered into modules of genes with similar expression patterns for each species. These networks were analyzed to determine relevant modules through a hypergeometric approach based on a set of transcription factors and enzymes for each genome. The richest modules were characterized using PFAM families and KEGG metabolic maps. Additionally, we conducted a Gene Ontology analysis for enrichment of biological functions. Finally, we identified modules that shared similarity through all the studied organisms by using comparative genomics.
    URI
    https://doi.org/10.3389/fmolb.2019.00139
    http://repositorio.umayor.cl/xmlui/handle/sibum/6513
    Collections
    • Artículos WOS
    • Centro de Investigación en Genómica y Bioinformática (CGB)

    Si usted es autor(a) de este documento y NO desea que su publicación tenga acceso público en este repositorio, por favor complete el formulario aquí.


    Contact Us | Send Feedback
    Modificado por: Sistema de Bibliotecas Universidad Mayor - SIBUM
    DSpace software copyright © 2002-2018  DuraSpace
     

     



    Contact Us | Send Feedback
    Modificado por: Sistema de Bibliotecas Universidad Mayor - SIBUM
    DSpace software copyright © 2002-2018  DuraSpace